
1

Interaction Scripter Developer's Guide

Printed help

PureConnect powered by Customer Interaction Center® (CIC)

2018 R3

Last updated May 31, 2018

Abstract

This publication is for Web Page Developers who create sophisticated campaign scripts using Advanced
Interaction Scripter. Experience with ECMA-262 JavaScript is recommended as a prerequisite.

i

Table of Contents
Interaction Scripter Developer's Guide...1

What is Interaction Scripter? ...2

Scripter from a programmer's perspective ...4

Writing custom scripts for Interaction Connect or Scripter .NET...6

Sample Interaction Connect scripts .. 10

Sample ICWS Dialer Web Application ... 22

Capitalization conventions... 25

IceLib.Dialer API Documentation.. 26

Interaction Scripter Debugger.. 27

Interaction Scripter Actions ... 30

Interaction Scripter Events .. 130

Interaction Scripter Attributes ... 158

Interaction Scripter Behaviors.. 187

scripter object .. 190

Script Examples .. 410

Frequently Asked Questions .. 460

Copyright and Trademark Information ... 475

Revisions .. 478

1

Interaction Scripter Developer's Guide
This publication is for web page developers who create campaign scripts for Interaction Scripter .NET
Client. Experience with ECMA-262 JavaScript is recommended as a prerequisite. This document explains
the actions, events, attributes, and services that are used to create custom campaign scripts using HTML
and JavaScript.

Organization of Material

The material is divided into reference sections that you can read in any order. Topics are cross-
referenced using hyperlinks. To learn about new features, reliability enhancements, and bug fixes in this
release, refer to the Interaction Dialer Release Notes and the Revisions topic in this document.

Section Description

Interaction
Scripter Actions

Actions are messages from Interaction Scripter scripts to the server that trigger
an action on the CIC server. This section explains the various actions that are
available in Scripter and how to implement code in a web pages to use these
actions.

Interaction
Scripter Events

Events are notification messages from the CIC server that trigger script
functions.

Interaction
Scripter
Attributes

Attributes are data items passed by actions to the CIC server. A Dialer attribute
is data from a column in a database that is associated with a campaign.

Interaction
Scripter
Behaviors

Behaviors are like command line parameters and are used to change the way
that Scripter behaves when running custom scripts. This means that the
behaviors are limited to the custom scripts that implement them rather than
applying globally.

The scripter
object

The scripter object defines call, campaign, chat, conference, queue, and user
objects whose methods and properties are useful in blended call center
environments.

Script Examples
This section discusses commonly scripted programming tasks in Advanced
Interaction Scripter.

Frequently
Asked
Questions

This section provides the answers to frequently asked questions.

Revisions Describes bug fixes and changes in Interaction Scripter.

Last revision: May 31,2018

Interaction Scripter Developer's Guide

2

What is Interaction Scripter?

Interaction Scripter is a client application that executes campaign scripts written in HTML and
Javascript. This application is used primarily by call center agents. Scripter's primary job is to execute
campaign scripts—HTML pages that guide call center agents through stages of a campaign call. Scripts
are displayed inside an embedded instance of Microsoft's Internet Explorer web browser. Since the
browser component is built-in, Interaction Scripter can intercept and respond to web events. It fully
leverages IE's feature set and can render sophisticated user interfaces.

Interaction Scripter allows call center agents to login to running campaigns. Each campaign has an
associated campaign script (written in HTML) that implements screen pop, navigational aids, narratives,
and data entry forms. Scripts are rendered by an embedded web browser component. Information that
was collected or modified by agents is routed back to campaign databases.

Note: The term "Interaction Scripter" refers to the client application that executes scripts, and also
to the programming API that is used to create scripts. This documentation uses "Interaction Scripter
Client" or "Scripter Client" to differentiate between the client application and the Interaction
Scripter programming language. For details of running Interaction Scripter Client from a user
perspective, refer to the Interaction Scripter Client User Guide.

Navigating a campaign script is much like surfing the Internet. Agents use simple point-and-click mouse
movements, rather than typed commands, to control the Interaction Scripter Client. Each screen tells
the agent what to say, and offers appropriate options for that stage of the call. Campaign scripts can
display any combination of text, graphics, and visual controls. Interaction Scripter is a scripting host that
exposes specialized telephony objects to scripting languages.

Interaction Scripter client is a powerful, stable, extensible, customizable DHTML client that uses off-the-
shelf Internet technology to deliver user interfaces that proprietary scripting clients cannot
match. Interaction Scripter's unique combination of API and client features provides a world-class
solution that offers immense power.

Interaction Scripter can be fully customized using nothing more than standard HTML code. However, its
power and extensibility become apparent when one considers that Scripter fully supports Dynamic
HTML (DHTML) and ECMA-262 JavaScript. These scripting languages, although not required for the
deployment of the client, allow developers to greatly extend the functionality of campaign scripts by
manipulating call, chat, conference, user, or queue objects in campaign scripts.

• Campaign scripts are created using well-understood and well-documented HTML coding
technologies. Scripts can be created using off-the-shelf HTML development tools. The

Interaction Scripter Developer's Guide

3

pervasiveness of individuals skilled in writing and maintaining HTML code makes script
development easy and inexpensive.

• Campaign scripts run in the Interaction Scripter .NET Client. You cannot run scripts in a web
browser, since the client is a scripting host that exposes methods and properties that browsers
do not provide. The Scripter Client offers state-of-the-art browsing, since an instance of
Microsoft's Internet Explorer is embedded into the client application.

Interaction Scripter Client supports two types of scripts

All campaigns except agentless campaigns have a script that displays contact information to an
agent. Scripts prompt for data entry, tell agents what to say, and provide navigation options that agents
use to transition between calls or stages of a call. Interaction Scripter .NET Client populates the agent's
display with information pertaining to the call, the customer, and the campaign, based on behavior
defined in a script. Information collected or modified by agents is routed back to campaign database
tables.

Interaction Scripter Client supports two types of scripts: base scripts configured by non-programmers in
Interaction Dialer Manager, and custom scripts created by web developers.

• Base scripts (also called Standard Forms) display columns from the contact list, and may offer
textual prompts for the Dialer agent to read to the contact. Base scripts provide simple page-to-
page navigation controls and call disposition options.

• Custom scripts also provide screen pop, navigation controls and disposition options, but with
any desired appearance and layout. Custom scripts require web development expertise to
create.

Interaction Scripter Client supports any combination of base and custom scripts when multiple
campaigns are running. Agents receive exactly the information and options they need to process each
call.

Interaction Scripter Developer's Guide

4

Scripter from a programmer's perspective

From a programming perspective, scripts written for Interaction Scripter client support events, actions,
attributes, and behaviors. These elements manipulate objects in all environments, regardless of whether
Interaction Dialer is also installed. Predictive actions, events, and attributes work only when Interaction
Dialer is installed on the CIC server. Standard actions, events, and attributes work with or without
Interaction Dialer.

Event

Events are notification messages from CIC server that trigger script functions. For example, an event can
provide notification that a queue on the server has changed. When a call is placed on a queue, this
event changes the queue, generating an event message.

Predictive events are notification events associated with campaign activities for Predictive, Power or
Preview campaigns. Predictive events are raised by Scripter when an agent is logged into Dialer. All
predictive events are functions declared in a script that are called when an event occurs.

Standard events are generalized and can be used in any script, including scripts for blended
environments. These events are not directly associated with being logged into Dialer, though they can
be used when logged into Dialer too. Standard events are generated when queues change.

Actions

Actions are messages from Interaction Scripter scripts to the server that trigger an action on the CIC
server.

Standard Actions perform normal operations on phone calls, such as picking up a call, placing it on hold,
transferring, or recording. Standard actions provide basic telephony integration with the PureConnect
platform. These actions allow scripts to manipulate telephone calls.

Predictive Actions attributes and events are only valid if Interaction Dialer is installed on the CIC Server
and the user is logged into Dialer. Predictive actions are only applicable in Interaction Dialer campaigns,
and can be applied only to campaign calls. Predictive actions are also useful in preview mode, when
information about a party is pushed to an agent before the agent initiates the call.

Attributes

Attributes are data items passed by actions to the CIC server. A Dialer attribute is data from a column in
a database that is associated with a campaign. Every Dialer database column is automatically associated
with a script object of the same name with IS_Attr_ prefixed. For example, the database column
"address" is available as script attribute "IS_ATTR_ADDRESS".

If the attribute is first declared in the script, it will go back to the Dialer server during a call complete
function, and it can be accessed from a handler. In the CIC environment, an attribute is a piece of
information about an object (such as a telephone call) that travels with the object. An example might be
the telephone number of the individual called during a campaign. The server passes attributes to the
client application when a new call event occurs. The client passes attributes to the server when a call-
complete action is performed.

Predictive attributes are attributes that are normally used with either a Predictive, Preview or Power
dialing campaigns. These attributes are not to be used in blended environments, for example in

Interaction Scripter Developer's Guide

5

inbound pages loaded in scripter. The predictive base view for dialer is not loaded in an inbound page,
thus these attributes would not return any values.

System Services attributes are supplemental predictive attributes that retrieve information about a
Dialer agent, such as the agent's name, ID, or client status. System services are read-only.

Custom attributes are also supported. Scripter provides the ability to create any attribute within a
custom script. These attributes can be references to the actual values in the call list or can be a newly
created attribute declared in a meta tag within the pages loaded in scripter.

Behaviors

Behaviors are like command line parameters and are used to change the way that Scripter behaves
when running custom scripts. This means that the behaviors are limited to the custom scripts that
implement them rather than applying globally.

Predictive behaviors are only applicable for custom scripts associated with a Predictive, Power or
Preview campaign.

Interaction Scripter Developer's Guide

6

Writing custom scripts for Interaction Connect or Scripter .NET

Starting with PureConnect 2018 R3, Dialer agents can use Interaction Connect or Interaction Scripter
.NET to process outbound calls that use custom scripts. As before, both clients support base scripts.

Base scripts run in both clients

• Base scripts do not require programming expertise to create. With appropriate access rights,
anyone can use the Scripts container in Interaction Administrator to design a base script.

• Every base script is compatible with Interaction Connect and Interaction Scripter .NET. The same
base script may be used by a pool of agents running either or both applications.

Custom scripts run in one client or the other

Programmers develop custom scripts using HTML and JavaScript, in accordance with the Interaction
Scripter Developer Guide. The script appears on an agent’s screen when a call is previewed or routed to
the agent.

Scripter .NET and Connect process JavaScript statements differently–either synchronously or
asynchronously. This requires developers to implement different coding techniques. The resulting
custom script is compatible with one client or the other. A custom script cannot be compatible with
both clients.

Generally, web applications that perform tasks concurrently (asynchronously) are faster and more
responsive than applications that perform tasks consecutively (synchronously). A synchronous
application waits for something to finish before moving to another task. An asynchronous application
starts the next task before a previous task finishes.

Scripter .NET is synchronous

Scripter .NET executes one JavaScript statement at a time, waiting for each consecutive statement to
complete before moving to the next.

Suppose that you want Scripter .NET to transfer a call and then print a message. The pseudocode below
uses the IS_Action_Transfer action. Since Scripter .NET is synchronous, it executes the
IS_Action_Transfer action, waits until that action is complete, and then prints a message.

IS_Action_Transfer(CallId, false, "222-3333");

print('Transfer Success');

Interaction Connect is asynchronous

Interaction Connect executes JavaScript statements concurrently and independently from one another.

To tailor a script for Connect, programmers must ensure that the next operation does not begin until a
signal is received indicating that the previous operation has completed. This is accomplished by
implementing a custom callback (if required by a method) or by using a callback property of an
IS_Action, which will be explained in a moment. When the function completes, the callback receives a
signal telling it when to execute subsequent statements in its code block.

Interaction Scripter Developer's Guide

7

In Connect, the example above would not execute as the developer intended. Connect would execute
both statements concurrently. Without a callback to tell Connect that the Transfer action is completed,
it has no way to know that the developer's intent is to print a message after the transfer is completed.

To wait until the transfer ends, pass a callback function as a method parameter. In the code block for the
callback, add any statements you want to execute after the calling method completes.

The callback property ensures that IS_Actions execute properly in Interaction Connect

Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for use in
Connect scripts only. Each custom script action has a new callback attribute named "callback". If the
action fails, the callback will be invoked with an error. If the action is successful, the callback will be
invoked with no error. Customers can use this to determine how to proceed in the event that the action
failed or completed successfully. For example:

IS_Action_Transfer.callback = function(error) {

 if(error) {

 console.error("IS_Action_Transfer failed");

 } else {

 console.log("IS_Action_Transfer performed successfully");

 }

}

In practice, you'll want to define a function to pass to the action any attributes it needs. In the example
below, IS_Action_Transfer's callback property won't execute statements in its function code block until
the transfer completes.

function IS_Action_Transfer() {

 IS_Action_Transfer.callid = 1234;

 IS_Action_Transfer.consult = False;

 IS_Action_Transfer.recipient = '377-522-2222';

 IS_Action_Transfer.callback = function(error) {

 if (error) {

 console.error("The Transfer action failed.");

 } else {

 console.log("The Transfer action was a success");

 }

 }

}

Interaction Scripter Developer's Guide

8

This is the key to writing scripts that run asynchronously in Interaction Connect. Statements inside the
callback function block (highlighted above) execute only after the action completes. The callback will
return an error if the action fails. If the action was successful, no error is returned.

In this documentation, callbacks that apply exclusively to Interaction Connect are individually noted.

Additional callbacks added to support Interaction Connect

In addition to callbacks for actions, you can use callbacks designed for scripting objects—such as calls
and chats.

CallObject.callObjectInitializedHandler

Allows a script to dial a number after
waiting asynchronously for a call object to
be created.

ChatObject.requestedAttributeReturnHandler

Allows a script to asynchronously get a
chat attribute by first setting this callback
and then calling the
chatObject.getAttribute method.

ChatObject.chatObjectInitializedHandler

Allows a script to start a chat after waiting
asynchronously for a ChatObject to be
created.

ConferenceObject.conferenceObjectInitializedHandler

This callback is invoked when the
conference object has initialized.

ConferenceObject.conferenceStartedHandler

This callback is invoked when the
conference call has started.

Other scripting modifications to support Interaction Connect

• The IS_Action_Transfer action supports an "audience" parameter, used to toggle between
different parties on a consult transfer call.

• A new standard action, IS_Action_CompleteConsult ends a consult call in scripts for Interaction
Connect only.

• IS_Action_CallComplete has a new Boolean parameter named MakeAdditionalFollowUpCall. It
indicates whether the user should be put into "Additional Follow Up status", in support of a
feature that allows an agent to dial additional calls while in that status.

• For custom scripts in Scripter Connect, the wav file specified for the IS_Action_PlayWav action
must be located in the Resource Path directory on the CIC server (I3\IC\Resources by default).

• The Queue.connect method is now asynchronous, meaning that it can accept a single optional
callback argument that takes no parameters. In addition, Queue.connect no longer supports
Line Queue as a Type parameter. Scripts for Scripter .NET do not need to specify a callback, but
scripts for Connect must specify it.

Interaction Scripter Developer's Guide

9

• The Queue.startCallObjectsEnum, Queue.startChatObjectsEnum,
Queue.startConferenceObjectsEnum and Queue.startObjectIdsEnum properties now accept an
optional callback (for use with Connect scripts only) whose single parameter contains the result.
User.startAccessibleQueuesEnum and User.startViewableWorkgroupsEnum work the same way.

• See Revisions for a complete list of changes to this documentation.

Summary

Since Interaction Connect is a web application, it runs in a browser without the need to install software
on agent desktops. The option to replace a desktop application with a cloud application is compelling. As
a prerequisite to using Connect, customers must manually update legacy scripts (or write new scripts) to
run asynchronously.

• Legacy scripts written for Interaction Scripter .NET work as before in that client application.

• Due to the general complexity of script programming, Genesys cannot provide a script migration
utility. Fortunately, most JavaScript developers are familiar with callbacks. Implementing new
callbacks to support asynchronous execution should not present an obstacle for most
customers.

• A custom script must be written for one client or the other.

• The same custom script cannot be used by both Scripter .NET and Interaction Connect.

• Scripts for Interaction Connect implement callback functions that wait for asynchronous
operations complete.

• Scripts for Scripter .NET should not implement callbacks designed for Connect.

See Also

Sample Interaction Connect scripts

Interaction Scripter Developer's Guide

10

Sample Interaction Connect scripts

Developers use different coding techniques to fine tune custom scripts for Interaction Connect or
Scripter .NET. This article discusses coding techniques, with sample scripts you can download here.

Interaction Connect utilizes promises to execute tasks in an asynchronous manner. Custom script
actions and scripter object methods execute asynchronously in Interaction Connect. The asynchronous
behavior of Interaction Connect differs considerably from Scripter .NET’s synchronous behavior. When
composing a script for Interaction Connect, developers should be aware of these differences and take
the steps necessary to avoid any potentially undesirable side effects. Consider the code below which
sends a disposition request and attempts to set the agent back to the “Available” status.

{code:java}

function callComplete(disposition) {

 // Assign the disposition to the action.

 IS_Action_CallComplete.wrapupcode = disposition;

 // Send the call disposition.

 IS_Action_CallComplete.click();

 // Set the agent back to Available.

 IS_Action_ClientStatus = "Available";

 IS_Action_ClientStatus.click();

}

{code}

If this code were to be executed from a custom script in Scripter.NET, each action would be executed
consecutively. The disposition request would be sent and the script’s code execution would halt until
the disposition request had completed. Once the disposition request had completed, code execution
would continue and the next action would be performed.

From a custom script in Interaction Connect, the disposition request would be sent and code execution
would continue resulting in the client status request being sent regardless of the outcome of the
disposition request. This asynchronous behavior could potentially lead to some undesirable outcomes.
Consider what might happen if the initial disposition request failed and the client status request
succeeded. The agent would be in an “Available” status, but Dialer would be waiting for the agent to
send a disposition for the call on their queue.

To allow scripter actions and scripter object methods to be executed in a more synchronous manner in
Interaction Connect, callbacks have been added to each action and scripter object method. A better
version of the example code above for a custom script in Interaction Connect might look like the
following.

{code:java}

// code placeholder

{code}

Interaction Scripter Developer's Guide

11

Sample scripts

Source code is provided for the following sample scripts:

• Example 1 shows how to use IS_Action_QueryContactList and IS_Action_ManualOutboundCall
actions to query a contact list and then populate a table of records within the custom script. This
script allows the agent to click on records in the table to initiate a manual outbound dialer call.

• Example 2 shows how to initiate chats from a custom script using the IS_Action_PlaceChat
action and how to send/receive chat messages using the chat object.

Both scripts demonstrate the use of callback functions for each action used in the script. To download
the source code of both scripts, click here.

Example 1

This script uses IS_Action_QueryContactList and IS_Action_ManualOutboundCall actions to query the
contact list and populate a table of records within the custom script. An agent can click on records in the
table to initiate a manual outbound dialer call.

Example 1 source code

<!doctype html>

<html lang="en">

<head>

 <!-- Required meta tags -->

 <meta charset="utf-8">

Interaction Scripter Developer's Guide

12

 <meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">

 <!-- Actions -->

 <meta name="IS_Action_CallComplete">

 <meta name="IS_Action_QueryContactList">

 <meta name="IS_Action_ClientStatus">

 <meta name="IS_Action_ManualOutboundCall">

 <meta name="IS_Action_Disconnect">

 <meta name="IS_Action_Trace">

 <!-- Attributes -->

 <meta name="IS_Attr_CampaignId">

 <!-- Enable the command toolbar -->

 <meta name="IS_CommandToolbar_Visible" content="true">

 <!-- Bootstrap is used for layout and design -->

 <link rel="stylesheet" href="./bootstrap/fonts+icons.css">

 <link rel="stylesheet" href="./bootstrap/bootstrap-material-
design.min.css">

</head>

<body>

 <div class="row m-5">

 <div class="col-md-2">

 <h5>Dispositions</h5>

 <button type="button" class="btn btn-block btn-secondary text-left m-
0" onclick="sendDisposition('Success')">Success</button>

 <button type="button" class="btn btn-block btn-secondary text-left m-
0" onclick="sendDisposition('No Answer')">No Answer</button>

 <button type="button" class="btn btn-block btn-secondary text-left m-
0" onclick="sendDisposition('Busy')">Busy</button>

 <button type="button" class="btn btn-block btn-secondary text-left m-
0" onclick="sendDisposition('Wrong Party')">Wrong Party</button>

 <button type="button" class="btn btn-block btn-secondary text-left m-
0" onclick="sendDisposition('Do Not Dial')">Do Not Dial</button>

 <hr class="featurette-divider"/>

 <button type="button" class="btn btn-block btn-primary text-left m-0"
onclick="queryContactList()">Refresh Table</button>

 </div>

 <div class="col-md-10">

 <table class="table table-striped table-hover"
id="contactRecordsTable"></table>

Interaction Scripter Developer's Guide

13

 </div>

 </div>

 <!-- Load jquery and popper first as it is required by Bootstrap. -->

 <script src="./bootstrap/jquery-3.2.1.slim.min.js"></script>

 <script src="./bootstrap/popper.js"></script>

 <script src="./bootstrap/bootstrap-material-design.js"></script>

 <script type="text/javascript">

 // When the DOM is ready, initialize Bootstrap and query the contact
list.

 $(document).ready(function () { $('body').bootstrapMaterialDesign();
setTimeout(function () { queryContactList(); }); });

 // The queryContactList function is called after the DOM is loaded
initially,

 // or when the "Refresh Table" button is clicked.

 function queryContactList() {

 IS_Action_QueryContactList.displayName = "Example Table";

 IS_Action_QueryContactList.tableName = "EXAMPLETABLE";

 IS_Action_QueryContactList.connectionId = "{F028F7C3-089A-48D8-
9DCC-C1A4CA53FB5D}";

 IS_Action_QueryContactList.statement = "select i3_identity,
firstname, lastname, status, phonenumber from EXAMPLETABLE";

 /* Assign a callback which will be invoked after the action has
been exectued.

 The response contains an error message indicating whether or not
the query was

 successful. */

 IS_Action_QueryContactList.callback = function (response) {

 if (response.errorMessage === "") {

 // The query was successful. Process the returned records
and update

 // the contact list table.

 loadContactTable(response.records);

 } else {

 // The query failed. Log an error message to the console.

 IS_Action_Trace.message = "Failed to query the contact
list.";

 IS_Action_Trace.level = 0;

 IS_Action_Trace.click();

 }

Interaction Scripter Developer's Guide

14

 }

 // Execute the action.

 IS_Action_QueryContactList.click();

 }

 /* The loadContactTable function builds an HTML string which is used
to populate

 the returned records into the contact list table. The function is
called whenever

 the IS_Action_QueryContactList action is successful. */

 function loadContactTable(records) {

 // Start by generating HTML for the table's headers.

 var contactTableHTML = "<thead><tr>";

 var tableHeaders = Object.keys(records[0].values);

 for (var i = 0; i < tableHeaders.length; i++) {

 contactTableHTML += "<th>" + tableHeaders[i] + "</th>";

 }

 contactTableHTML += "</tr></thead>";

 /* Next, loop through each record and generate HTML for the table
body.

 Each record returned by the query will have its own row in the
table.

 If a row is clicked, a manual outbound call is attempted on the
corresponding

 record. */

 contactTableHTML += "<tbody style='cursor: pointer;'>";

 for (var i = 0; i < records.length; i++) {

 var contactIdentity = records[i].identity;

 var contactPhoneNumber = records[i].values.phonenumber;

 contactTableHTML += "<tr onclick='placeManualOutboundCall(\""
+ contactIdentity + "\" , \"" + contactPhoneNumber + "\")'>";

 var tableValues = Object.values(records[i].values);

 for (var j = 0; j < tableValues.length; j++) {

 contactTableHTML += "<td>" + tableValues[j] + "</td>";

 }

 contactTableHTML += "</tr>";

 }

 contactTableHTML += "</tbody>";

 // Populate the table with the generated HTML.

Interaction Scripter Developer's Guide

15

 document.getElementById("contactRecordsTable").innerHTML =
contactTableHTML;

 }

 // The placeManualOtuboundCall function is called whenever a row in
the contact

 // list table is clicked.

 function placeManualOutboundCall(identity, phoneNumber) {

 IS_Action_ManualOutboundCall.i3identity = identity;

 IS_Action_ManualOutboundCall.campaignid = "25A69636-DEE1-40E3-
8FAF-EC92F0A6384F";

 IS_Action_ManualOutboundCall.contactcolumnid = "1";

 IS_Action_ManualOutboundCall.phonenumber = phoneNumber;

 // Initiate the manual outbound call.

 IS_Action_ManualOutboundCall.click();

 }

 function sendDisposition(disposition) {

 // Disconnect the call.

 IS_Action_Disconnect.click();

 IS_Action_CallComplete.wrapupcode = disposition;

 // Assign a callback to be invoked after the
IS_Action_CallComplete action

 // has been executed.

 IS_Action_CallComplete.callback = function (error) {

 if (error) {

 // The IS_Action_CallComplete action failed, log an
error.

 IS_Action_Trace.message = "The disposition failed.";

 IS_Action_Trace.level = 0;

 IS_Action_Trace.click();

 } else {

 // The disposition was successful. Set the agent back to
available.

 IS_Action_ClientStatus.statuskey = "Available";

 IS_Action_ClientStatus.click();

 }

 }

 // Execute the action.

 IS_Action_CallComplete.click();

Interaction Scripter Developer's Guide

16

 }

 </script>

</body>

</html>

Example 2

This script initiates a chat using the IS_Action_PlaceChat action. It uses a chat object to send and receive
chat messages.

Example 2 source code

<!doctype html>

<html lang="en">

<head>

 <!-- Required meta tags -->

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">

 <!-- Actions -->

 <meta name="IS_Action_CallComplete">

 <meta name="IS_Action_ClientStatus">

Interaction Scripter Developer's Guide

17

 <meta name="IS_Action_PlaceChat">

 <meta name="IS_Action_Disconnect">

 <meta name="IS_Action_Trace">

 <!-- Enable the command toolbar -->

 <meta name="IS_CommandToolbar_Visible" content="true">

 <!-- Bootstrap is used for layout and design -->

 <link rel="stylesheet" href="./bootstrap/fonts+icons.css">

 <link rel="stylesheet" href="./bootstrap/bootstrap-material-
design.min.css">

</head>

<body>

 <div class="row m-5">

 <div class="col-md-2">

 <h5>Dispositions</h5>

 <button type="button" class="btn btn-block btn-secondary text-
left m-0" onclick="sendDisposition('Success')">Success</button>

 <button type="button" class="btn btn-block btn-secondary text-
left m-0" onclick="sendDisposition('No Answer')">No Answer</button>

 <button type="button" class="btn btn-block btn-secondary text-
left m-0" onclick="sendDisposition('Busy')">Busy</button>

 <button type="button" class="btn btn-block btn-secondary text-
left m-0" onclick="sendDisposition('Wrong Party')">Wrong Party</button>

 <button type="button" class="btn btn-block btn-secondary text-
left m-0" onclick="sendDisposition('Do Not Dial')">Do Not Dial</button>

 <h5 class="mt-5">Place Chat</h5>

 <div class="pl-2">

 <input type="text" class="form-control mb-1"
placeholder="User Name" id="userName" />

 <button type="button" class="btn btn-primary btn-block text-
left" onclick="placeChat()">Place Chat</button>

 </div>

 </div>

 <div class="col-md-10">

 <div class="row" id="chatArea">

 </div>

 </div>

 </div>

 <!-- Load jquery and popper first as it is required by Bootstrap. -->

Interaction Scripter Developer's Guide

18

 <script src="./bootstrap/jquery-3.2.1.slim.min.js"></script>

 <script src="./bootstrap/popper.js"></script>

 <script src="./bootstrap/bootstrap-material-design.js"></script>

 <script type="text/javascript">

 // When the DOM is ready, initialize Bootstrap

 $(document).ready(function () { $('body').bootstrapMaterialDesign();
});

 // Keep track of the agent's chats

 var currentChats = [];

 function placeChat() {

 // Get the specified recipient from the input box

 IS_Action_PlaceChat.recipient =
document.getElementById("userName").value;

 IS_Action_PlaceChat.click();

 }

 // The ChatInitialized event is called every time a chat is
initialized.

 function IS_Event_ChatInitialized(interactionId) {

 currentChats[interactionId] = scripter.createChatObject();

 currentChats[interactionId].chatObjectInitializedHandler =
function (chatObject) {

 // Verify the chat is associated with this agent.

 if (chatObject.localName === scripter.user.id) {

 // Assign a callback function to be executed whenever the
chat object's

 // messages have changed.

 currentChats[interactionId].SubObjectChangeHandler =
chatMessagesChanged;

 // Open a chat box within the script.

 renderChatBox(currentChats[chatObject.id]);

 }

 }

 currentChats[interactionId].id = interactionId;

 }

 function renderChatBox(chatObject) {

 // Build HTML for a chat box using a Bootstrap card and card-
deck.

Interaction Scripter Developer's Guide

19

 var chatBoxHTML = "<div class='col-md-4 mt-3' id='" +
chatObject.id + "'>";

 chatBoxHTML += "<div class='card-deck'>";

 chatBoxHTML += "<div class='card text-center'>";

 // Add a card header to indicate who the agent is chatting with.

 chatBoxHTML += "<div class='card-header'>";

 chatBoxHTML += "<h6 class='d-inline'>Chatting with " +
chatObject.remoteName + "</h6>";

 chatBoxHTML += "<button type='button' class='close'
onclick='closeChat(" + chatObject.id + ")' aria-label='Close'><span aria-
hidden='true'>×</button>";

 chatBoxHTML += "</div>";

 // Add a body to the card which will contain the chat messages.

 chatBoxHTML += "<div class='card-body chatMessages' id='" +
chatObject.id + "' style='overflow-y: scroll; height: 200px; padding:
1rem;'></div>";

 // Add a footer to the card with an input box and send button for
the agent to

 // send messages.

 chatBoxHTML += "<div class='card-footer text-muted'
style='border-top-style: none'>";

 chatBoxHTML += "<div class='d-flex'>";

 chatBoxHTML += "<input type='text' class='form-control
chatMessage d-inline' placeholder='Chat Message' id='" + chatObject.id +
"'>";

 chatBoxHTML += "<button class='btn btn-secondary' type='button'
onclick='sendChat(" + chatObject.id + ")'>Send</button>";

 chatBoxHTML += "</div></div>";

 // Closing divs for the column, card-deck, and card.

 chatBoxHTML += "</div></div></div>";

 // Add the chat box html to the chat area in the script.

 $("#chatArea").append(chatBoxHTML);

 }

 // The chatMessagesChanged function is assigned to each chat object's

 // SubObjectChanged handler and is called whenever the chat object
has changed.

 function chatMessagesChanged(messages) {

 if (messages.length > 0) {

 var chatId = messages[0].chatMember.interactionId;

 var messageHTML = "";

Interaction Scripter Developer's Guide

20

 // Build HTML for the chat message.

 messageHTML += "<p class='text-left'>" +
messages[0].chatMember.displayName + ": " + messages[0].text + "</p>";

 // Append the chat message to the chat box associated with
the chat.

 $("#" + chatId + ".chatMessages").append(messageHTML);

 }

 }

 function closeChat(interactionId) {

 currentChats[interactionId].disconnect();

 // Remove the chat box from the script.

 $("#" + interactionId).remove();

 }

 function sendChat(interactionId) {

 alert("Sending Chat!");

 // Get the message from the associated chat box

 var message = $("#" + interactionId + ".chatMessage").val();

 // Send the message from the associated chat object

 currentChats[interactionId].sendChatMessage(message);

 }

 function sendDisposition(disposition) {

 // Disconnect the call.

 IS_Action_Disconnect.click();

 IS_Action_CallComplete.wrapupcode = disposition;

 // Assign a callback to be invoked after the
IS_Action_CallComplete action has

 // been executed.

 IS_Action_CallComplete.callback = function (error) {

 if (error) {

 // The IS_Action_CallComplete action failed, log an
error.

 IS_Action_Trace.message = "The disposition failed.";

 IS_Action_Trace.level = 0;

 IS_Action_Trace.click();

 } else {

 // The disposition was successful. Set the agent back to
available.

Interaction Scripter Developer's Guide

21

 IS_Action_ClientStatus.statuskey = "Available";

 IS_Action_ClientStatus.click();

 }

 }

 // Execute the action.

 IS_Action_CallComplete.click();

 }

 </script>

</body>

</html>

See Also

Writing custom scripts for Interaction Connect or Scripter .NET

Sample ICWS Dialer Web Application

Last updated 2018-03-26 14:28:02 EDT

Interaction Scripter Developer's Guide

22

Sample ICWS Dialer Web Application

A sample IC web services application is provided to show how common campaign tasks can be coded.
Before studying the source code to learn how the application is constructed, here's how to run the app:

Download the example application

1. Click here to download the application source code (icws-dialer.zip).

2. Extract contents of ic-ws-dialer.zip file to your hard drive.

Launch the app and connect to ODS

1. Navigate to to the location where you extracted the zip. Open index.html in a web browser.

2. Enter credentials required to access your Outbound Dialer Server:

User Name

CIC user name.

Password

Password for CIC user account.

Station

CIC station name.

Server

Name of the Outbound Dialing Server.

3. Click Sign in.

Interact with Calls

The figure below shows a server running "Test Campaign" in Preview mode. A preview screen pop
displays information about the contact. The attributes of the call were made visible by clicking
Attributes.

Interaction Scripter Developer's Guide

23

1. To dial the contact, click Place Preview Call.

o If you click Skip Preview Call, a different contact will be displayed from the contact list.

o If you click Request Dialer Break, a break will be granted after the current call ends. You
must select a disposition to conclude the current call.

Your break begins when the current call ends. To end a break, click End Dialer Break.

2. The banner displays ON DIALER CALL to indicate that the call connected to the party.

Interaction Scripter Developer's Guide

24

3. Select a disposition to conclude the call. Click Success, No Answer, Wrong Party, or Busy.

Log Out

You must conclude the current call before logging out. Disposition the call and then click Log Out.

See also

Sample Interaction Connect scripts

Interaction Scripter Developer's Guide

25

Capitalization conventions

When writing scripts, comply with the following capitalization conventions:

1. Use upper camel case for class names. Capitalize each word of a class name. Examples are
CallObject, ChatObject, and QueueObject.

2. Use lower camel case for method names and variables. In lower camel case, the first word is
lower case and all subsequent words are capitalized. Examples are:

CallObject.dial

var objCall = Scripter.createCallObject();.

3. Use lower case for attributes and properties. Examples are:

callObject1.dial(remotenumber, false);

IS_Action_Trace.message = "This is a test.";

NOTE: When a script is executes, attribute names in IS_Actions are automatically converted to
lower case. It is not necessary to update existing scripts to make those attributes lower case.

Interaction Scripter Developer's Guide

26

IceLib.Dialer API Documentation

IceLib.Dialer is an API for creating custom dialing clients and applications that configure Interaction
Dialer. Related documentation is hosted on the PureConnect Developer Portal at
https://help.genesys.com/developer/cic/docs/dialericelib/webhelp/index.html.

https://developer.inin.com/
https://help.genesys.com/developer/cic/docs/dialericelib/webhelp/index.html

Interaction Scripter Developer's Guide

27

Interaction Scripter Debugger

Interaction Scripter offers a debugging feature that helps developers detect and resolve problems with
custom campaign scripts. The debugger is available only when Interaction Scripter is started with the
Debug command-line parameter.

When you run Scripter in Debug mode, it analyzes events in the current session to identify potential
problems with scripts. When a problem is detected, Scripter sends an error message to the debugger. In
most cases you must manually access the Debug Dialog window to view the error messages . However,
the Debug Dialog window automatically opens when scenarios like the following are detected:

• Agent sets status to Available without dispositioning the current campaign call.

• Agent received a datapop while a disposition is pending.

• A page unload event was called, but a corresponding onload event did not occur within 5
seconds.

• Multiple page elements are assigned the same 'name' attribute.

• Scripter detects COM errors related to invalid CallIDs, conference ids, etc.

• A SetAvailability call is made while an Agent is on a call or is in 'Awaiting Callback' status.

• Client status changes to an Available state while the Agent is processing a call.

• A call has not been dispositioned prior to transfer.

• A logout request occurs while in "Awaiting Callback" status.

• An Agent's Workgroup activation changes unexpectedly.

Launch Scripter in Debug mode

To launch Scripter in Debug mode, you add the \debug parameter to the Interaction Scripter command
line:

InteractionScripter.NET.exe /debug

When you do, a Debug menu appears in the Interaction Scripter window.

From the menu select the Show Dialog command and you'll see the Debug Dialog window. Error
messages are displayed in a list at the top of the Debug Dialog. Columns in the list indicate the time,
Script Page filename, and text of each error. The dialog also displays the URL of the selected script
page. Tab pages on the dialog display the full text of the error message and may offer suggestions for
resolving the error, script snippets that show how to resolve error, and contextual information about
the scenario.

Interaction Scripter Developer's Guide

28

Controls on the Debug Dialog

Error Message list box

Messages are displayed in a list at the top of the Debug Dialog. Columns in the list indicate the time,
Script Page filename, and text of each error.

Script URL Field

This read-only field displays the URL of the selected script page.

Close button

This button closes the Debug Dialog. If you reopen it later, messages logged since the current Scripter
session started will be displayed in the list, unless messages were previously cleared.

Clear button

Removes all messages logged since Scripter was started.

Tab pages

The tab pages at the bottom of the dialog display the full text of the selected error message, and may
optionally offer suggestions for resolving the error, example code, and other information. The icon
appears on tab pages that are not empty.

Interaction Scripter Developer's Guide

29

Error

This tab displays the text of the selected error message, which may be too long to view in the message
list.

Suggestion

This tab may contain suggestions for resolving the error.

Example

This tab may contain a script snippet that shows how to resolve the error. (Most messages do not have
corresponding code samples.) Text in this window can be copied to the clipboard. To copy text, make a
selection, press the right mouse button, and then choose Copy from the context menu.

Stack

This tab may provide contextual information regarding a situation. For example, if the script attempts to
disconnect, when there is no active call object, that context would be described on the stack page.

Interaction Scripter Developer's Guide

30

Interaction Scripter Actions

Actions are messages from Interaction Scripter scripts to the server that trigger an action on the CIC
server. This section explains the various actions that are available in Scripter and how to implement
code in a web pages to use these actions.

Standard Actions

Standard Actions perform normal operations on phone calls, such as picking up a call, placing it on hold,
transferring, or recording. Standard actions provide basic telephony integration with the PureConnect
platform. These actions allow scripts to manipulate telephone calls.

Predictive Actions

Predictive Actions are valid if Interaction Dialer is installed on the CIC Server and the user is logged into
Dialer. Predictive actions apply to Interaction Dialer campaigns and campaign calls. Predictive actions
are also useful in preview mode, when information about a party is pushed to an agent before the agent
initiates the call.

Using Scripter actions is a two step process

1. First the action must be defined in the web page. The action is defined in an HTML meta tag,
this meta tag is then parsed by Scripter when the page is loaded. This allows Scripter to set up
specific event handlers to handle when the action is called from within the body of the loaded
web page. If the action is not defined in a meta tag, Scripter will not know how to respond to
the action, and an error will be received in Scripter. If in debug mode an entry will also be made
in the debug window indicating that the action is not defined. The meta tag definition of the
action and the calling action itself much match in case. The meta tag definition is case sensitive.

2. The second step in setting up an action is to use the action in a function definition within
JavaScript. The function definition is usually in response to an event handler in the web page,
like handling a button click event or a drop down value change event for example. When calling
the Scripter action, the calling action is normally the name of the action followed by a .click().

NOTE: A few actions should be used with care, since they potentially affect the performance of a
script or server. Actions having scale impact include:

• IS_Action_QueryContactList—an inefficient or overly broad query could affect the
performance of a database server.

• Dialer.sendCustomHanderlNotification Method—starting a very complex, long-running
handler could affect the performance of a PureConnect server.

Interaction Scripter Developer's Guide

31

Standard Actions

Standard Actions

The Interaction Scripter standard actions can be used in an inbound script or an outbound script. These
actions are loaded into the base view in Interaction Scripter. These actions do not require the user to be
logged into Dialer, thus can be used in a web page that is auto loaded within Scripter for handling
inbound calls in a blended environment.

Generally speaking, standard actions are operations that scripts can perform on call objects. Standard
actions emulate the functionality of the CIC client. Most standard actions manipulate a telephone call.
There are standard actions that pick up, listen to, mute, disconnect, record, and transfer calls, for
example. To indicate which call to process, CallID can be specified as an attribute. If a CallID is not
provided, the current or active call of the current campaign in the queue is assumed to be the target of
the action.

Additional standard actions can change an agent's client status, tab page, toggle full screen mode, or
make the Scripter window topmost. The table below lists standard actions and attributes. Optional
attributes are enclosed in brackets. Interaction Scripter standard actions can be used in an inbound
script or an outbound script. These actions are loaded into the base view in Interaction Scripter.

Standard actions do not require the user to be logged into Dialer, and therefore can be used in a
web page that is auto loaded within Scripter for handling inbound calls in a blended environment.

In this section, each action is discussed and a code sample for each action is provided.

Action Definition

IS_Action Close Closes the current tab page.

IS_Action_ClientStatus Sets agent status.

IS_Action_CompleteConsult

This action ends a consult call in scripts for Interaction
Connect only.

IS_Action_Disconnect Disconnect a call

IS_Action_Exit Terminates Interaction Scripter Client.

IS_Action_Hold Put a call on hold.

IS_Action_Listen Listen to a call.

IS_Action_Mute Mute a call.

IS_Action_Park Park a call.

Interaction Scripter Developer's Guide

32

IS_Action_Pickup Pick up a call.

IS_Action_PlaceCall Place a call.

IS_Action_PlaceChat Initializes a chat between the user and another user.

IS_Action_PlayWav Play pre-recorded message to the call.

IS_Action_Private Prevent others from listening to call.

IS_Action_Record Record a call.

IS_Action_RecordPause Pause a recording.

IS_Action_SelectPage Sets focus to the current tab page.

IS_Action_SendToVoiceMail Send a call to voice mail.

IS_Action_SetForeground Brings application window to the top.

IS_Action_Trace Creates a trace log entry.

IS_Action_Transfer Transfer a call.

Interaction Scripter Developer's Guide

33

IS_Action_ClientStatus

Definition

This action provides the ability to change a user status within a script. It changes the agent's CIC client
status—an availability indicator that affects the processing of calls directed to the agent. To receive calls
in a campaign, an agent's client status must be set to an "available" status condition code. Status
indicators are defined in Interaction Administrator's "Status Messages" container (as Message Names).
Some of the default status indicators are:

At a Training Session At Lunch Available

Available, Follow-Me Available, Forward Available, No ACD

Away From desk Do Not Disturb Gone Home

In a Meeting On Vacation Out of the Office

Out of Town Working at Home

Any status other than "Available", "Available, Forward" or "Available, No ACD" sends incoming calls to
the agent's voice mailbox. For example, an agent whose status is "At Lunch" will not receive calls.

Attributes

This action as three properties, only one is required the other two are optional. The code snippet below
uses statuskey, which is the localized value of the status. This is appropriate to use if the script is being
developed for another language. The IS_Action_ClientStatus element accepts the following attributes:

statusid

The value to change the users' status to (e.g. "Available").

[until]

Optional DATETIME that determines when this status condition will expire. Think of this as the
date and time that the status is valid until. This only applies to statuses that allow DateTime
option.

[statuskey]

Optional language-independent attribute that allows a script to change status by specifying a
message name, such as "Available", rather than a localized status Message. This frees the script
developer from having to know the localized version of status strings.

For example, a script might set IS_Action_ClientStatus.statuskey = "AcdAgentNotAnswering",
rather than use IS_Action_ClientStatus.statusid = "ACD – Agent Not Answering", which is
language-dependent. For more information, see the Status Messages container in Interaction
Administrator.

[callback]

Interaction Scripter Developer's Guide

34

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_ClientStatus() {

 IS_Action_ClientStatus.statusid = 'Available';

 IS_Action_ClientStatus.callback = function(error) {

 if (error) {

 console.error("IS_Action_ClientStatus failed.");

 } else {

 console.log("IS_Action_ClientStatus succeeded.");

 }

 }

}

Example 1

Example 1 paints a button that sets the client status to the "Available".

<head>

 <script language=javascript>

 function IS_Event_PreviewTimeoutStopped(args) {

 var id = args.interactionId;

 // insert other code here as needed...

 }

 </script>

</head>

Example 2

This status button example invokes a user-defined script function named "SetClientStatus" to
change the agent's client status to "Available". When the button is clicked, the actual element that
fires the event is a <meta> element in the non-visible <head> section of the document. The
<meta> element in the <head> section of the HTML page instantiates the action as a non-visual
object.

Interaction Scripter Developer's Guide

35

<head>

 <meta name="IS_Action_ClientStatus">

 <script language=javascript>

 function SetClientStatus(StatusId) {

 IS_Action_ClientStatus.statusid = StatusId;

 IS_Action_ClientStatus.click();

 }

 </script>

</head>

<body>

 <input type=button value="Available"
onclick="SetClientStatus('Available');"

</body>

Example 3

<head>

 <meta name="IS_Action_ClientStatus">

 <script language=JavaScript>

 function IS_ChangeUserStatus(p_statusString, p_dtUntilDateTime) {

 IS_Action_ClientStatus.statuskey = p_statusString;

 if (p_dtUntilDateTime != null) {

 IS_Action_ClientStatus.until = p_dtUntilDateTime;

 }

 IS_Action_ClientStatus.click();

 }

 </script>

</head>

<body>

 <input type=button value="Available"
onclick="IS_ChangeUserStatus('Available');">

</body>

Interaction Scripter Developer's Guide

36

IS_Action_CompleteConsult

Definition

This action ends a consult call in scripts for Interaction Connect only.

When a consult transfer action is called from a custom script in Scripter.NET, an IceLib call is made to
complete the consult interaction. The consulted party and the original party are connected and the
agent is removed from the call.

But in Interaction Connect, an Interaction Center Web Services (ICWS) call must be made to start a
consult interaction before the consult transfer can be completed. Because of this difference in client
behavior, developers should use the "IS_Action_CompleteConsult" action to cancel or complete a
consult transfer.

Attributes

action

Set this attribute to "complete" to complete the consult call, or "cancel" to cancel the consult
call.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_CompleteConsult() {

 IS_Action_CompleteConsult.action = "complete";

 IS_Action_CompleteConsult.callback = function(error) {

 if (error) {

 console.error("IS_Action_CompleteConsult failed.");

 } else {

 console.log("IS_Action_CompleteConsult succeeded.");

 }

 }

}

Example

To create a consult transfer:

IS_Action_Transfer.consult = true;

IS_Action_Transfer.recipient = "1234";

Interaction Scripter Developer's Guide

37

IS_Action_Transfer.click(); // This will initiate the call to "1234".

// The dialer call is placed on hold and the agent is speaking with the consulted
party.

At this point, the "audience" attribute of an IS_Action_Transfer can be used to toggle between
participants of the consult interaction.

To complete the consult transfer:

IS_Action_CompleteConsult.action = "complete";

IS_Action_CompleteConsult.click();

To cancel the consult transfer:

IS_Action_CompleteConsult.action = "cancel";

IS_Action_CompleteConsult.click();

Interaction Scripter Developer's Guide

38

IS_Action_Close

Definition

Each campaign script is displayed on its own tab page in Interaction Scripter. IS_Action_Close closes the
current tab page. If on a Dialer call, close is only performed once the current call is
disconnected/transferred and dispositioned. Scripter will recognize click events from any HTML element
whose name has an associated action documented in this API (e.g.: "IS_Action_CallComplete"). If the
script needs to associate several buttons with the same action, then define the action using a meta
element and call the click event on the meta element from the button(s).

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Close() {

 IS_Action_Close.callback = function(error) {

 if (error) {

 console.error("IS_Action_Close failed.");

 } else {

 console.log("IS_Action_Close succeeded.");

 }

 }

}

Example 1

This example creates a button that closes the current tab page

<body>

 <input type=button name="IS_Action_Close" value="Close">

</body>

Example 2

This status button example invokes a user-defined script function named "Close" to close the current tab
page. When the button is clicked, the actual element that fires the event is a <meta> element in the

Interaction Scripter Developer's Guide

39

non-visible <head> section of the document. The <meta> element in the <head> section of the HTML
page instantiates the action as a non-visual object.

<head>

 <meta name="IS_Action_Close">

 <script language="JavaScript">

 function IS_CloseTab() {

 IS_Action_Close.click();

 }

 </script>

</head>

<body>

 <input type=button value="Close Tab" onclick="IS_CloseTab();">

</body>

Interaction Scripter Developer's Guide

40

IS_Action_Disconnect

Definition

This call control action provides the ability to disconnect either the current call that is on the current
users queue, or by passing in a valid callid of a call, it will disconnect that call. IS_Action_Disconnect
does not generate an error if the party hangs up before this action is called. This action disconnects an
agent from the call specified by the callid attribute. The current or active call of the current campaign
in the queue is assumed to be the target of this action if the callid attribute is not set. Scripter will
recognize click events from any HTML element whose name has an associated action documented in this
API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons with the same
action, then define the action using a meta element and call the click event on the meta element from
the button(s).

Attributes

The IS_Action_Disconnect element accepts callid as an optional attribute:

[callid]

Optional. The callid to which this action applies (e.g. "89900001"). Dialer scripts use the
current Dialer callid by default.A "debug mode" error is logged for non-Dialer scripts if the
callid attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Disconnect() {

 IS_Action_Disconnect.callback = function(error) {

 if (error) {

 console.error("IS_Action_Disconnect failed.");

 } else {

 console.log("IS_Action_Disconnect succeeded.");

 }

 }

}

Example 1

This example paints a "Disconnect" button that allows the agent to disconnect a call.

Interaction Scripter Developer's Guide

41

<body>

 <input type=button name="IS_Action_Disconnect" value="Disconnect">

</body>

Example 2

The "Disconnect" button in this example invokes a user-defined "Disconnect" script function to
disconnect a call. When the button is clicked, the actual element that fires the event is a <meta>
element in the non-visible <head> section of the document. The <meta> element in the <head> section
of the HTML page instantiates the action as a non-visual object.

<head>

 <meta name="IS_Action_Disconnect">

 <script language=javascript>

 function Disconnect() {

 IS_Action_Disconnect.click();

 }

 </script>

</head>

<body>

 <input type=button value="Disconnect" onclick='Disconnect();">

</body>

Example 3

This example passes the callid of the call to disconnect.

<head>

 <meta name="IS_Action_Disconnect">

 <script language="javascript">

 function IS_DisconnectCall(p_page, p_CallId) {

 if (p_CallId != null) {

 IS_Action_Disconnect.callid = p_CallId;

 }

 IS_Action_Disconnect.click();

 if (p_page != null) location.href = p_page;

 }

Interaction Scripter Developer's Guide

42

 </script>

</head>

<body>

 <input type=button value="Disconnect Call"
onclick="IS_DisconnectCall(null,IS_ATTR_CallId.value);">

</body>

Interaction Scripter Developer's Guide

43

IS_Action_Exit

Definition

This action provides the ability to exit Scripter from within the web page that is loaded in Scripter.
Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete").If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Exit element accepts the following attributes:

[endtask]

This Boolean attribute is optional. When set to false, the script will request logouts from Dialer
and wait for those request to be granted. Once the Dialer logout requests have been granted,
the script will exit both the Dialer session and Scripter. When set to true, which is the default*,
the script will immediately close Scripter. The Dialer session will continue running until a
timeout occurs. If you don't specify the EndTask attribute, the result will be the same as setting
the attribute to true.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Exit() {

 IS_Action_Exit.endtask=false;
 IS_Action_Exit.callback = function(error) {

 if (error) {

 console.error("IS_Action_Exit failed.");

 } else {

 console.log("IS_Action_Exit succeeded.");

 }

 }

}

Example 1

This example paints a button that closes Interaction Scripter.

Interaction Scripter Developer's Guide

44

<body>

 <input type=button name="IS_Action_Exit" value="Exit">

</body>

Example 2

function Exit() {

 IS_Action_Exit.endtask = false;

 IS_Action_Exit.click();

}

Example 3

function Exit() {

 IS_Action_Exit.click();

}

Interaction Scripter Developer's Guide

45

IS_Action_Hold

Definition

This action places the current call (or the call specified by the callid attribute) on hold. To take a call
off hold, an agent must invoke the IS_Action_Pickup element. The current or active call of the current
campaign in the queue is assumed to be the target of this action, if the callid attribute is not set.
Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Hold element has the following attribute:

[callid]

The callid to which this action applies (e.g. "89900001"). The callid is optional. Dialer
scripts use the current Dialer callid by default. A "debug mode" error is logged for non-Dialer
scripts if callid attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Hold() {

 IS_Action_Hold.callback = function(error) {

 if (error) {

 console.error("IS_Action_Hold failed.");

 } else {

 console.log("IS_Action_Hold succeeded.");

 }

 }

}

Example 1

This is an example of a "Hold" button that allows the agent to hold a call.

<body>

Interaction Scripter Developer's Guide

46

 <input type=button name="IS_Action_Hold" value="Hold">

 <input type=button name="IS_Action_Pickup" value="Pickup">

</body>

Example 2

This example places the call specified by the callid attribute on hold.

<head>

 <meta name="IS_Action_Hold">

 <script language="javascript">

 function IS_HoldCall(p_page, p_CallId) {

 if (p_CallId != null) {

 IS_Action_Hold.callid = p_CallId;

 }

 IS_Action_Hold.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

<body>

 <input type=button value="Put Call On Hold" onclick="IS_HoldCall();">

</body>

Example 3

This is an example of a toggle-style "Hold" button that invokes the "Hold" script function. Note that
<meta> elements in the <head> section of the HTML& document instantiate the actions as non-visual
objects.

<head>

 <meta name="IS_Action_Hold">

 <meta name="IS_Action_Pickup">

 <script language=javascript>

 var onHold = false;

 function ToggleHold() {

 if (onHold) {

Interaction Scripter Developer's Guide

47

 onHold = false;

 IS_Action_Pickup.click();

 } else {

 onHold = true;

 IS_Action_Hold.click();

 }

 }

 </script>

</head>

<body>

 <input type=button value="Hold" onclick="ToggleHold();">

</body>

Interaction Scripter Developer's Guide

48

IS_Action_Listen

Definition

This call control action allows an agent to listen to a call specified by the callid attribute. The listen
action requires the callid of the call to listen in on. You would need to use the other queue functions
in the scripter API to enumerate the call on another users' queue and retrieve one of the call ids and
pass that into the listen action. Invoking the IS_Action_Listen element allows an agent to listen to
another call; invoking the IS_Action_Listen element again turns off the listen feature. The current or
active call of the current campaign in the queue is assumed to be the target of this action, if the CallId
attribute is not set.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplte"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Listen element accepts the following attributes:

callid

The callid to which this action applies (e.g. "89900001"). callid is required. A debug mode
error is logged if the callid attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Listen() {

 IS_Action_Listen.callid = document.getElementById("listenId").value;

 IS_Action_Listen.callback = function(error) {

 if (error) {

 console.error("IS_Action_Listen failed.");

 } else {

 console.log("IS_Action_Listen succeeded.");

 }

 }

}

Interaction Scripter Developer's Guide

49

Example 1

This example allows an agent to click the “Listen” button to listen to the call specified by the input
Interaction ID.

<input type=”text” id=”listenId” placeholder=”Interaction ID">
<button type=”button” onclick=”listen()”>Listen</button>

function listen() {

IS_Action_Listen.callid = document.getElementById("listenId").value;

IS_Action_Listen.click();

}

Example 2

This example connects to another agent’s queue and automatically listens to any calls that are added to
the queue.

<input type=”text” id=”user” placeholder=”User”>
<button type=”button” onclick=”connectToQueueAndListen()”>Listen to
Queue</button>

function connectToQueueAndListen() {

var queue = scripter.createQueue();

queue.callObjectAddedHandler = callObjectAdded;

var user = document.getElementById("user").value;

queue.connect(9, user);

}

function callObjectAdded(callObj) {

IS_Action_Listen.callid = callObj.id;

IS_Action_Listen.click();

}

Interaction Scripter Developer's Guide

50

IS_Action_Mute

Definition

This action mutes the current call, or the call specified by the callid attribute, so that the other party
cannot hear what the agent says. Invoking the IS_Action_Mute element mutes a call; invoking the
IS_Action_Mute element again turns off the mute feature. The current or active call of the current
campaign in the queue is assumed to be the target of this action, if the CallId attribute is not set.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Mute element has the following attributes:

[callid]

Optional. The callid to which this action applies (e.g. "89900001"). Dialer scripts use the
current Dialer callid by default. A "debug mode" error is logged for non-Dialer scripts if the
callid attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Mute() {

 IS_Action_Mute.callback = function(error) {

 if (error) {

 console.error("IS_Action_Mute failed.");

 } else {

 console.log("IS_Action_Mute succeeded.");

 }

 }

}

Example 1

This is an example of a "Mute" button that allows the agent to mute a call so that the other party cannot
hear the agent.

Interaction Scripter Developer's Guide

51

<body>

 <input type=button name="IS_Action_Mute" value="Mute">

</body>

Example 2

This is an example of a "Mute" button that invokes the "Mute" script function. The "mute" script
function mutes a call so that the other party cannot hear the agent.;

<head>

 <meta name="IS_Action_Mute">

 <script language=javascript>

 function Mute() {

 IS_Action_Mute.click();

 }

 </script>

</head>

<body>

 <input type=button value="Mute" onclick="Mute();">

</body>

Example 3

This example shows how to mute the call specified by CallId.

<head>

 <meta name="IS_Action_Mute">

 <script language="javascript">

 function IS_MuteCall(p_page, p_CallId) {

 if (p_CallId != null) {

 IS_Action_Mute.callid = p_CallId;

 }

 IS_Action_Mute.click();

 if (p_page != null) location.href = p_page;

 }

Interaction Scripter Developer's Guide

52

 </script>

</head>

<body>

 <input type=button value="Mute Call" onclick="IS_MuteCall();">

</body>

Interaction Scripter Developer's Guide

53

IS_Action_Park

Definition

This call control action parks the current call, or a call identified by callid, on a user queue. The
current call on the users' queue is the default call that this action applies to. Syntactically,
IS_Action_Park is similar to IS_Action_Transfer. When a call is parked, it is placed on hold and
transferred to a local extension. IS_Action_Park assumes the current dialer call by default. Scripter will
recognize click events from any HTML element whose name has an associated action documented in this
API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons with the same
action, then define the action using a meta element and call the click event on the meta element from
the button(s).

Attributes

The IS_Action_Park element has the following attributes:

[callid]

Optional. The callid to which this action applies (e.g. "89900001"). Dialer scripts use the
current Dialer callid by default. A "debug mode" error is logged for non-Dialer scripts if the
callid attribute is not specified.

recipient

Set this attribute to the user id or phone number of the call is being parked on.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Park() {

 IS_Action_Park.recipient = "BillS";

 IS_Action_Park.callback = function(error) {

 if (error) {

 console.error("IS_Action_Park failed.");

 } else {

 console.log("IS_Action_Park succeeded.");

 }

 }

}

Interaction Scripter Developer's Guide

54

Example 1

<head>

 <meta name="IS_Action_Park">

 <script language=javascript>

 function Park(userId) {

 IS_Action_Park.recipient = userId;

 IS_Action_Park.click();

 }

 </script>

</head>

<body>

 <input type=button value="Park Call on Ext. 101" onclick='Park("101")'>

</body>

Example 2

Parks a call identified by its callid.

<head>

 <meta name="IS_Action_Park">

 <script language="javascript">

 function IS_ParkCall(p_userId, p_page, p_CallId) {

 if (p_CallId != null) {

 IS_Action_Park.callid = p_CallId;

 }

 IS_Action_Park.recipient = p_userId;

 IS_Action_Park.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

<body>

 <input type=button value="Park Call"
onclick="IS_ParkCall(„101',null,null);">

Interaction Scripter Developer's Guide

55

</body>

Interaction Scripter Developer's Guide

56

IS_Action_Pickup

Definition

This action provides the ability to pick up the current call that is on the users' queue or answer a call
specified by the callid attribute. Normally this action is called after a Hold action is performed. Calling
this action takes the call off Hold. If the callid attribute is not set, the first active call in the queue is
assumed to be the target of this action. If you call IS_Action_Pickup when there is no call, the routine
terminates without generating an error.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Pickup element has the following attributes:

[callid]

Optional. The callid to which this action applies (e.g. "89900001"). CallId is optional. Dialer
scripts use the current Dialer callid by default. A "debug mode" error is logged for non-Dialer
scripts if the CallId attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Pickup() {

 IS_Action_Pickup.callback = function(error) {

 if (error) {

 console.error("IS_Action_Pickup failed.");

 } else {

 console.log("IS_Action_Pickup succeeded.");

 }

 }

}

Example 1

This is an example of a "Pickup" button that allows the agent to pick up a call.

Interaction Scripter Developer's Guide

57

<body>

 <input type=button name="IS_Action_Pickup" value="Pickup">

</body>

Example 2

This is an example of a "Pickup" button that invokes the "Pickup" script function. The "pickup" script
function picks up a call.

<head>

 <meta name="IS_Action_Pickup">

 <script language=javascript>

 function Pickup() {

 IS_Action_Pickup.click();

 }

 </script>

</head>

<body>

 <input type=button value="Pickup" onclick='Pickup();">

</body>

Example 3

This example answers the call identified by callid.

<head>

 <meta name="IS_Action_Pickup">

 <script language="javascript">

 function IS_PickUpCall(p_page, p_CallId) {

 if (p_CallId != null) {

 IS_Action_Pickup.callid = p_CallId;

 }

 IS_Action_Pickup.click();

 if (p_page != null) location.href = p_page;

 }

Interaction Scripter Developer's Guide

58

 </script>

</head>

<body>

 <input type=button value="Pickup Call" onclick="IS_PickUpCall();">

</body>

Interaction Scripter Developer's Guide

59

IS_Action_PlaceCall

Definition

This action allows an agent to place another call from within the script that is loaded in Scripter. The call
can be placed to another extension or an external phone number.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_PlaceCall element has the following attributes:

recipient

The number of this recipient (e.g. "555-1212", or "101"). IS_Action_PlaceCall fails without a
valid recipient.

[page]

URL of page to open after the call is placed.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_PlaceCall() {

 IS_Action_PlaceCall.recipient = "555-1212";
 IS_Action_PlaceCall.callback = function(error) {

 if (error) {

 console.error("IS_Action_PlaceCall failed.");

 } else {

 console.log("IS_Action_PlaceCall succeeded.");

 }

 }

}

Example 1

This is an example of a "Place a Call" button that allows the agent to place a call (in this case, to
extension 101).

Interaction Scripter Developer's Guide

60

<body>

 <input type=button name="IS_Action_PlaceCall" value="Call Ext. 101"
recipient="101">

</body>

Example 2

This is an example of a "Place a Call" button that invokes the "PlaceCall" script function. The "PlaceCall"
script function places a call (in this case, to extension 101).

<head>

 <meta name="IS_Action_PlaceCall">

 <script language=javascript>

 function PlaceCall(recipient) {

 IS_Action_PlaceCall.recipient = recipient.value;

 IS_Action_PlaceCall.click();

 }

 </script>

</head>

<body>

 <input type=button value="Call Ext. 101" onclick="PlaceCall('101');">

</body>

Example 3

<head>

 <meta name="IS_Action_PlaceCall">

 <script language="javascript">

 function IS_PlaceCall(p_Number, p_Page) {

 IS_Action_PlaceCall.recipient = p_Number;

 IS_Action_PlaceCall.click();

 if (p_Page != null) location.href = p_Page;

 }

 </script>

Interaction Scripter Developer's Guide

61

</head>

<body>

 <input type=button value="Place Call"
onclick="IS_PlaceCall(‘3178723000');">

</body>

Interaction Scripter Developer's Guide

62

IS_Action_PlaceChat

Definition

Initializes a chat between the current user and another user. As soon as the chat is initialized, the
IS_Event_ChatInitialized event is emitted. Your script should listen for that event to ensure that it does
not proceed until the chat is fully initialized.

Attributes

recipient

The userid of the other user that you would like to start a chat with.

Example

intitializeChat(userId)

{

 IS_Action_PlaceChat.recipient = userId;

 IS_Action_PlaceChat.click();

}

Interaction Scripter Developer's Guide

63

IS_Action_PlayWav

Definition

This call control action provides the ability to play a wave file to the call. Since the web page is hosted in
Scripter, wave files can be loaded from the local machine without security issues, since the pages have
access to the local file system on the workstation. Usage of this function requires a conference resource.
Ensure conference resources have been allocated on the CIC Server. Without these resources, PlayWav
will not function. Scripter will recognize click events from any HTML element whose name has an
associated action documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to
associate several buttons with the same action, then define the action using a meta element and call the
click event on the meta element from the button(s).

NOTE: For custom scripts in Scripter Connect, the wav file specified for the IS_Action_PlayWav
action must be located in the Resource Path directory on the CIC server (I3\IC\Resources by default).

Attributes

The IS_Action_PlayWav element has the following attributes:

file

Fully qualified path to a wave audio file. Scripts can optionally stream audio files from the ODS
server by specifying http or https URI's.

[callid]

Optional. The CallId to which this action applies (e.g. "89900001"). Dialer scripts use the current
Dialer CallId by default. A "debug mode" error is logged for non-Dialer scripts if the CallId
attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_PlayWav() {

 IS_Action_PlayWav.file = "\\\\cic2\\recordings\\disclaimer.wav";

 IS_Action_PlayWav.callback = function(error) {

 if (error) {

 console.error("IS_Action_PlayWav failed.");

 } else {

 console.log("IS_Action_PlayWav succeeded.");

 }

Interaction Scripter Developer's Guide

64

 }

}

Example 1

This example creates a button that plays a wave audio file. Note that extra backslashes must be added
to the .wav filename, since Telephony Services escapes (removes) backslashes.

<html>

<head>

 <meta name="IS_Action_PlayWav">

 <script language="javascript">

 function PlayDisclaimer() {

 IS_Action_PlayWav.file = "\\\\cic2\\recordings\\disclaimer.wav";

 IS_Action_PlayWav.click();

 }

 </script>

</head>

<body>

 <button onclick="PlayDisclaimer();">Play Disclaimer</button>

</body>

</html>

Example 2

<head>

 <meta name="IS_Action_PlayWav">

 <script language="javascript">

 function IS_PlayWaveFileToCall(p_WaveFilePath, p_page) {

 IS_Action_PlayWav.file = p_WaveFilePath;

 IS_Action_PlayWav.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

Interaction Scripter Developer's Guide

65

<body>

 <input type=button value="Place Wave"
onclick="IS_PlayWaveFileToCall(‘C:\Temp\PartyOn.wav');">

</body>

Interaction Scripter Developer's Guide

66

IS_Action_Private

Definition

This call control action prevents other CIC users from listening to or recording the call specified by the
callid attribute. The current or active call of the current campaign in the queue is assumed to be the
target of this action, if the callid attribute is not set. Scripter will recognize click events from any
HTML element whose name has an associated action documented in this API (e.g.:
"IS_Action_CallComplete"). If the script needs to associate several buttons with the same action, then
define the action using a meta element and call the click event on the meta element from the button(s).

Attributes

The IS_Action_Private element has the following attributes:

[callid]

Optional. The callid to which this action applies (e.g. "89900001"). Dialer scripts use the
current Dialer callid by default. A "debug mode" error is logged for non-Dialer scripts if the
callid attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Private() {

 IS_Action_Private.callback = function(error) {

 if (error) {

 console.error("IS_Action_Private failed.");

 } else {

 console.log("IS_Action_Private succeeded.");

 }

 }

}

Example 1

This is an example of a "Private" button that allows the agent to prevent other CIC users from listening
or recording the call.

<body>

Interaction Scripter Developer's Guide

67

 <input type=button name="IS_Action_Private" value="Private">

</body>

Example 2

This is an example of a "Private " button that invokes the "Private" script function. The "private" script
function prevents other CIC users from listening or recording the call.

<head>

 <meta name="IS_Action_Private">

 <script language=javascript>

 function Private() {

 IS_Action_Private.click();

 }

 </script>

</head>

<body>

 <input type=button value="Private" onclick="Private();">

</body>

Example 3

<head>

 <meta name="IS_Action_Private">

 <script language="javascript">

 function IS_PrivateCall(p_CallId, p_page) {

 if (p_CallId != null) {

 IS_Action_Private.callid = p_CallId;

 }

 IS_Action_Private.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

<body>

Interaction Scripter Developer's Guide

68

 <input type=button value="Private Call" onclick="IS_PrivateCall();">

</body>

Interaction Scripter Developer's Guide

69

IS_Action_Record

Definition

This call control action provides the ability to record the current call or another call by passing in the
callid of the call. When a record operation is invoked in this way, it functions like pressing the record
button in a CIC client. If the user is associated with an email account, that user will receive a recording in
their inbox. This action records the call specified by the callid attribute. The recording is saved as a
.WAV file on the CIC Server. (See the online help file for the CIC client that you are using.) Selecting the
IS_Action_Record element starts a recording session for a call; selecting the IS_Action_Record element
again stops the recording session for a call. See also: IS_Action RecordPause.

All recordings associated with a call are saved in a single .WAV file. (There might be more than one
recording associated with a call if the agent started and stopped the recording more than once during
the call.) After the call is completed, the .WAV file can be attached to an email and sent to a CIC user, or
stored in a database—see the Interaction Recorder online help for details concerning storage of
recordings in a database. The current or active call of the current campaign in the queue is assumed to
be the target of this action, if the callid attribute is not set.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Record element has the following attributes:

[callid]

Optional. The callid to which this action applies (e.g. "89900001"). Dialer scripts use the
current Dialer callid by default. A "debug mode" error is logged for non-Dialer scripts if the
callid attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Record() {

 IS_Action_Record.callback = function(error) {

 if (error) {

 console.error("IS_Action_Record failed.");

 } else {

 console.log("IS_Action_Record succeeded.");

Interaction Scripter Developer's Guide

70

 }

 }

}

Example 1

This is an example of a "Record" button that allows the agent to record a call.

<body>

 <input type=button name="IS_Action_Record" value="Record">

</body>

Example 2

This is an example of a "Record" button that invokes the "Record" script function. The "record" script
function records a call.

<head>

 <meta name="IS_Action_Record">

 <script language=javascript>

 function Record() {

 IS_Action_Record.click();

 }

 </script>

</head>

<body>

 <input type=button value="Record" onclick="Record();">

</body>

Example 3

<head>

 <meta name="IS_Action_Record">

 <script language="javascript">

 function IS_RecordCall(p_CallId, p_page) {

 if (p_CallId != null) {

Interaction Scripter Developer's Guide

71

 IS_Action_Record.callid = p_CallId;

 }

 IS_Action_Record.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

<body>

 <input type=button value="Record Call" onclick="IS_RecordCall();">

</body>

Example 4

This example toggles recording on and off

<head>

 <meta name="IS_Action_Record">

 <script language="javascript">

 function RecordCall(obj) {

 if (obj.value != "Recording...") {

 obj.value = "Recording...";

 IS_Action_Record.click();

 } else {

 obj.value = "Record Call";

 IS_Action_Record.click();

 }

 }

 </script>

</head>

<body>

 <input type=button id='rcrdCall' onclick="RecordCall(this);"
value="Record Call">

</body>

Interaction Scripter Developer's Guide

72

IS_Action_RecordPause

Definition

This action allows an agent to pause recording of the call specified by the callid attribute. The current
or active call of the current campaign in the queue is assumed to be the target of this action, if the
callid attribute is not set. See also: IS_Action Record. This action works like a toggle. Selecting the
IS_Action_RecordPause element pauses a recording session for the call; selecting the
IS_Action_RecordPause again resumes the recording session for the call.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_RecordPause element has the following attributes:

[callid]

Optional. The callid to which this action applies (e.g. "89900001"). Dialer scripts use the
current Dialer CallId by default. A "debug mode" error is logged for non-Dialer scripts if the
callid attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_RecordPause() {

 IS_Action_RecordPause.callback = function(error) {

 if (error) {

 console.error("IS_Action_RecordPause failed.");

 } else {

 console.log("IS_Action_RecordPause succeeded.");

 }

 }

}

Example 1

This is an example of a "Pause Recording" button that allows the agent to pause the recording of a call.

Interaction Scripter Developer's Guide

73

<body>

 <input type=button name="IS_Action_RecordPause" value="Pause Recording">

</body>

Example 2

This is an example of a "Pause Recording" button that invokes the "RecordPause" script function. The
"RecordPause" function pauses the recording of a call.

<head>

 <meta name="IS_Action_RecordPause">

 <script language=javascript>

 function RecordPause() {

 IS_Action_RecordPause.click();

 }

 </script>

</head>

<body>

 <input type=button value="Pause Recording" onclick="RecordPause();">

</body>

Example 3

<head>

 <meta name="IS_Action_RecordPause">

 <script language="javascript">

 function IS_PauseRecord(p_CallId, p_page) {

 if (p_CallId != null) {

 IS_Action_RecordPause.callid = p_CallId;

 }

 IS_Action_RecordPause.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

Interaction Scripter Developer's Guide

74

</head>

<body>

 <input type=button value="Pause Record Call" onclick="IS_PauseRecord();">

</body>

Interaction Scripter Developer's Guide

75

IS_Action_SelectPage

Definition

When multiple URLs are loaded in Scripter, HTML pages are displayed on separate tabs. This action
brings focus to the calling page's tab in Scripter when an event occurs in that page.

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_SelectPage() {

 IS_Action_SelectPage.callback = function(error) {

 if (error) {

 console.error("IS_Action_SelectPage failed.");

 } else {

 console.log("IS_Action_SelectPage succeeded.");

 }

 }

}

Example

<head>

 <meta name=IS_Action_SelectPage>

 <script language=javascript>

 window.onload = SelectPage;

 function SelectPage() {

 IS_Action_SelectPage.click();

 }

 </script>

</head>

Interaction Scripter Developer's Guide

76

IS_Action_SendToVoiceMail

Definition

This call control action allows an agent to send the call (specified by its callid attribute) to the agent's
voice mail account. The current or active call of the current campaign in the queue is assumed to be the
target of this action, if the callid attribute is not set. If the call is a predictive call, the call must still be
dispositioned.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_SendToVoiceMail element has the following attributes:

[callid]

Optional. The callid to which this action applies (e.g. "89900001"). Dialer scripts use the
current Dialer callid by default. A "debug mode" error is logged for non-Dialer scripts if the
CallId attribute is not specified.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_SendToVoiceMail() {

 IS_Action_SendToVoiceMail.callback = function(error) {

 if (error) {

 console.error("IS_Action_SendToVoiceMail failed.");

 } else {

 console.log("IS_Action_SendToVoiceMail succeeded.");

 }

 }

}

Example 1

This is an example of a "Voice Mail" button that allows the agent to send a call to the agent's voice mail
account.

Interaction Scripter Developer's Guide

77

<body>

 <input type=button name="IS_Action_SendToVoicemail" value="Voice Mail">

</body>

Example 2

This is an example of a "Voice Mail" button that invokes the "VoiceMail" script function. The
"VoiceMail" script function sends a call to the agent's voice mail account.

<head>

 <meta name="IS_Action_SendToVoicemail">

 <script language=javascript>

 function Voicemail() {

 IS_Action_SendToVoicemail.click();

 }

 </script>

</head>

<body>

 <input type=button value="Voice Mail" onclick='Voicemail()'>

</body>

Example 3

<head>

 <meta name="IS_Action_SendToVoiceMail">

 <script language="javascript">

 function IS_SendCallToVoiceMail(p_page, p_CallId) {

 if (p_CallId != null)

 IS_Action_SendToVoiceMail.callid = p_CallId;

 IS_Action_SendToVoiceMail.click();

 if (p_page != null)

 location.href = p_page;

 }

 </script>

Interaction Scripter Developer's Guide

78

</head>

<body>

 <input type=button value="VoiceMaill" onclick="IS_SendToVoiceMail();">

</body>

Interaction Scripter Developer's Guide

79

IS_Action_SetForeground

Definition

This action brings the Scripter window to the top of all applications that are open on the desktop when
an event happens in the page that is loaded in Scripter. Scripter will recognize click events from any
HTML element whose name has an associated action documented in this API (e.g.:
"IS_Action_CallComplete"). If the script needs to associate several buttons with the same action, then
define the action using a meta element and call the click event on the meta element from the button(s).

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_SetForeground() {

 IS_Action_SetForeground.callback = function(error) {

 if (error) {

 console.error("IS_Action_SetForeground failed.");

 } else {

 console.log("IS_Action_SetForeground succeeded.");

 }

 }

}

Example

<head>

 <meta name="IS_Action_SetForeground">

 <script language=javascript>

 window.onload = SetForeground;

 function SetForeground() {

 IS_Action_SetForeground.click();

 }

 </script>

</head>

Interaction Scripter Developer's Guide

80

IS_Action_Trace

Definition

IS_Action_Trace writes an entry to the trace log, to aid in script debugging. This action adds custom
trace messages from a custom script loaded in Scripter to Scripter's trace log file. The message is traced
under the topic "Scripter Custom". Use this action when you need to troubleshoot an issue with a script
or to compare the execution of the custom code in the script in relation to how Scripter executes the
page that is loaded. The ability to trace is valuable when designing scripts for Scripter and should be
taken into account for all scripts, whether they are inbound or outbound.

The first parameter is a string that contains the trace message. The second parameter is optional. It sets
the tracing level and must be a value in the range (0-3). Trace messages generated by this mechanism
have their own trace topic, "Scripter Custom".

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Trace element supports the following attributes:

message

Message is the trace message and is a string.

level

Level is the tracing level and must be one of the following:

0 Error

1 Warning

2 Status

3 Notes

If Level is invalid or missing, "Status" is used by default.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

Interaction Scripter Developer's Guide

81

function IS_Action_Trace() {

 IS_Action_Trace.message = "Hello, World!.";
 IS_Action_Trace.level = "3";

 IS_Action_Trace.callback = function(error) {

 if (error) {

 console.error("IS_Action_Trace failed.");

 } else {

 console.log("IS_Action_Trace succeeded.");

 }

 }

}

Example 1

<body>

 <input type=button name="IS_Action_Trace" Message="This is a test."
Value="Trace">

</body>

<head>

 <meta name="IS_Action_Trace">

 <script language="javascript">

 function Trace(); {

 IS_Action_Trace.message = "This is a test.";

 IS_Action_Trace.level = "3";

 IS_Action_Trace.click();

 }

 </script>

</head>

<body>

 <input type=button onclick="Trace();" value="Trace">

</body>

Example 2

<head>

Interaction Scripter Developer's Guide

82

 <meta name="IS_Action_Trace">

 <script language="javascript">

 function IS_TraceNote(p_Message) {

 IS_Action_Trace.message = p_Message;

 IS_Action_Trace.level = 3; // 3= Notes level

 IS_Action_Trace.click();

 }

 function IS_TraceError(p_Message) {

 IS_Action_Trace.message = p_Message;

 IS_Action_Trace.level = 0; // 0= Error level

 IS_Action_Trace.click();

 }

 </script>

</head>

<body>

 <input type=button value="Trace Error Message" onclick="IS_TraceError('An
Error Occurred');">

 <input type=button value="Trace Status Message" onclick="IS_TraceNote('A
sale occurred');">

</body>

Interaction Scripter Developer's Guide

83

IS_Action_Transfer

Definition

This call control action transfers the call specified by the call ID attribute. It provides the ability to either
do a blind transfer or a consult transfer on the current call that is on the users queue. The agent can
either talk with the recipient before transferring the call (consult transfer) or transfer the call directly to
the recipient without consultation (blind transfer). The current or active call of the current campaign in
the queue is assumed to be the target of this action, if the CallId attribute is not set.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Transfer element has the following attributes:

callid

The call ID to which this action applies (e.g. "89900001"). CallId is optional. Dialer scripts use the
current Dialer CallId by default. A "debug mode" error is logged for non-Dialer scripts if the
CallId attribute is not specified.

consult

Flags that this transfer is the beginning of a two-stage consult transfer call (e.g. "True").

recipient

If Consult call, the call ID of the recipient, otherwise the number of this recipient (e.g. "555-
1212" or "101"). IS_Action_Transfer fails without a valid recipient. In the examples below, the
agent who receives the transferred call must be running Interaction Scripter. If the call is
transferred to an agent who is not running Interaction Scripter, the record must be
dispositioned by the transferring agent first. See also: IS_Action_WriteData and Dialer
disposition actions if you are writing an outbound call script.

audience

This parameter is used with Interaction Connect scripts only. It toggles between participants of a
consult transfer call. Use this parameter only after a consult transfer has been initiated. See
Example 5 below.

neither Places both parties of the conference on hold.

caller
Enables communication between the agent and the original party. The
consulted party is placed on hold.

consultant
Enables communication between the agent and the consulted party. The
original party is placed on hold.

Interaction Scripter Developer's Guide

84

both
Enables 3 way communication between the original party, agent, and
consulted party.

See also IS_Action_CompleteConsult.

callback

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, IS_Action_Transfer's callback property won't
execute statements in its function code block until the transfer completes successfully.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Transfer() {

 IS_Action_Transfer.callid = 1234;

 IS_Action_Transfer.consult = False;

 IS_Action_Transfer.recipient = '377-522-2222';

 IS_Action_Transfer.callback = function(error) {

 if (error) {

 console.error("The Transfer action failed.");

 } else {

 console.log("The Transfer action was a success");

 }

 }

}

Statements inside the callback function block (highlighted above) execute only after the action
completes. The callback will return an error if the action fails. See Writing custom scripts for
Interaction Connect or Scripter .NET.

Example 1

This is an example of a "Transfer to Ext. 101" button that transfers the current call to the user queue& at
extension 101. This is an example of a blind transfer, where the call is transferred without consulting
beforehand.

<body>

 <input type=button name="IS_Action_Transfer" value="Transfer to Ext. 101"
consult="False" recipient="101">

</body>

Interaction Scripter Developer's Guide

85

Example 2

This is an example of a "Transfer to Ext. 101" button that invokes the "BlindTransfer" script function. The
"BlindTransfer" script function transfers the current call to the specified number (in this example,
extension 101). This is an example of a blind transfer, where the call is transferred without consulting
beforehand.

<head>

 <meta name="IS_Action_Transfer">

 <script language="javascript">

 function IS_BlindTransfer(p_Number) {

 IS_Action_Transfer.recipient = p_Number;

 IS_Action_Transfer.consult = false;

 IS_Action_Transfer.click();

 }

 </script>

</head>

<body>

 <input type=button value="Transfer To 101"
onclick="IS_BlindTransfer('101');">

</body>

Example 3

This example sets up a Consult transfer.

<head>

 <meta name="IS_Action_Transfer">

 <meta name="IS_Attr_CallId">

 <script language="javascript">

 function Transfer(number) {

 scripter.callObject.id = -1;

 scripter.callOjbect.dial(number, false);

 IS_Action_Transfer.consult = true;

 IS_Action_Transfer.recipient = scripter.callobject.id;

 Alert("Press OK when ready to continue");

 scripter.callObject.id = IS_Attr_CallId.value;

Interaction Scripter Developer's Guide

86

 scripter.callObject.pickup();

 IS_Action_Transfer.click();

 }

 </script>

</head>

<body>

 <input type=button value="Consult Transfer to 101"
onclick="Transfer('101');">

</body>

Example 4

function ConsultTransfer(p_Number) {

 var p_mCallObj = scripter.createCallObject();

 var iRes1 = confirm("Would you like to call the 3rd party?");

 // user selected OK, so let's call the 3rd party

 if (iRes1) {

 p_mCallObj.dial(p_Number, false);

 // set up the consult transfer

 IS_Action_Transfer.consult = true;

 // set up the recipient call object

 IS_Action_Transfer.recipient = p_mCallObj.id;
 var iRes2 = confirm("Press OK when you are ready to transfer the
call");

 //Transfer call to third party

 if (iRes2) {

 scripter.callObject.id = IS_ATTR_CallId.value;

 // pick up the call, it is probably on hold

 scripter.callObject.pickup();

Interaction Scripter Developer's Guide

87

 // now execute the Consult transfer that has been set up

 IS_Action_Transfer.click();

 } else {

 // they did not want to transfer, so lets disconnect the 3rd
party

 // call and pick up the original call

 // disconnect 3rd party call

 p_mCallObj.disconnect();

 // pick up original call

 scripter.callObject.id = IS_ATTR_CallId.value;

 scripter.callObject.pickup();

 }

 }

}

Example 5 (Interaction Connect only)

This example shows how to use the audience parameter in a script for Interaction Connect to toggle
between different legs of a consult transfer call.

IS_Action_Transfer.recipient = "1234";

IS_Action_Transfer.consult = true;

IS_Action_Transfer.click(); // A consult transfer is initiated. The agent is speaking
with the consulted party and the original party has been placed on hold.

IS_Action_Transfer.audience = "caller";

IS_Action_Transfer.click(); // The agent is now speaking with the original party, and
the consulted party is placed on hold.

IS_Action_Transfer.audience = "neither";

IS_Action_Transfer.click(); // Both parties of the conference are placed on hold.

IS_Action_Transfer.audience = "both";

IS_Action_Transfer.click(); // The agent is now speaking with both parties of the
conference.

Interaction Scripter Developer's Guide

88

Predictive Actions

Predictive Actions

Interaction Scripter Predictive actions are only valid when the user is logged into Dialer. These actions
are only applicable to Interaction Dialer campaigns, and therefore cannot be used in pages loaded into
Scripter Client using the autoload command line option, or for inbound call handling. Predictive actions
are also useful in preview mode, when information about a party is pushed to an agent before the agent
initiates the call.

Action Definition

IS_Action_BeginNonDialerCallScripting

Prevents the agent from being logged out of one
campaign and into another while the agent is on a non-
Dialer call.

IS_Action_CallComplete Submits a call result to Dialer.

IS_Action_EndBreak

This action flags an agent's status so that the agent will
receive campaign calls.

IS_Action_EndNonDialerCallScripting

Tells Scripter to resume automatic login of an Agent to
a new campaign after transitioning was delayed by
IS_Action_BeginNonDialerCallScripting.

IS_Action_EstablishPersistentConnection

This action calls the Agent only if a persistent
connection has not been established. Afterwards it
plays a .wav file to the Agent and then drops. The
system keeps the audio connection open since the
Agent has a persistent remote connection.

IS_Action_Logon Logon to a campaign.

IS_Action_ManualOutboundCall

Initiates a preview call against an existing contact to
either a supplied phone number, or to a different
phone number from the contact list of the supplied
record.

IS_Action_MarkCallForFinishing Flags a call for redirection to a Finishing Agent.

IS_Action_PlacePreviewCall Places a preview call (after a preview pop).

IS_Action_QueryContactList Queries the specified contact list for records.

Interaction Scripter Developer's Guide

89

IS_Action_RequestBreak Requests a break.

IS_Action_RequestContactData

Initiates a request to Dialer for additional contact
columns associated with the current Dialer call along
with PND table data for each contact column.

IS_Action_RequestLogoff Requests logoff.

IS_Action_SkipPreviewCall Skips a preview call (after a preview pop).

IS_Action_Stage Move call to a new stage.

IS_Action_StartReceivingCalls

When Scripter Client is started with the
/nostartreceiving parameter, a user can log into
Interaction Scripter and set status to available, but
Interaction Dialer will not place calls for the user until
the IS_Action_StartReceivingCalls action is called. This
parameter and its associated action are primarily used
with Preview Campaigns.

IS_Action_TransferToAttendant

Transfers the active Dialer call to an outbound
Attendant profile.

IS_Action_WriteData

Saves information associated with a predictive server to
the predictive database.

Interaction Scripter Developer's Guide

90

IS_Action_BeginNonDialerCallScripting

Definition

NonDialerCallScripting is now used to delay closing a script when the agent has logged out of all the
campaigns that the script is associated with. IS_Action_BeginNonDialerCallScripting prevents the agent
from being logged out of one campaign and into another while the agent is on a non-Dialer call.
Automatic campaign login will be delayed until the agent ends the non-dialer call. Use
IS_Action_BeginNonDialerCallScripting to delay campaign transitions, and
IS_Action_EndNonDialerCallScripting to terminate the delay. These are bracketing functions so that
multiple calls to IS_Action_BeginNonDialerCallScripting() and IS_Action_EndNonDialerCallScripting() can
be nested.

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_BeginNonDialerCallScripting() {

 IS_Action_BeginNonDialerCallScripting.callback = function(error) {

 if (error) {

 console.error("IS_Action_BeginNonDialerCallScripting failed.");

 } else {

 console.log("IS_Action_BeginNonDialerCallScripting succeeded.");

 }

 }

}

Interaction Scripter Developer's Guide

91

IS_Action_CallComplete

Definition

This action is used to disposition the current Dialer call. The details of the disposition will be determined
by the attributes that are specified. Once this action has been initiated, no further changes can be made
to the Dialer attributes. All element data is written to the server. If an update occurs to an element after
this action, the update will be lost. This action does not disconnect the call after it has been
dispositioned. You must use a separate action to disconnect the call.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_CallComplete element has the following attributes:

wrapupcode

The wrap up code to be used for the disposition. This should be the full wrap up code e.g. Busy –
Remote Busy.

[abandoned]

The optional Abandoned attribute indicates even though the outbound call achieved call
connect and routed to an Agent, the Dialer should consider it abandoned from a pacing,
compliance and reporting perspective. The default value of this attribute is VARIANT_FALSE.

[agentid]

When the scheduled party is called again, the call will be routed to the Agent identified by this
call ID. If AgentId is not specified the call will be routed to any available agent.

callbacktime

Date and time that the targeted individual requests the agent to reschedule the campaign call.
Typically, the date is entered in mm/dd/yy format and the time is entered in hh/mm AM/PM
format (E.g. CallBackTime = 02/01/99 06:30 PM)

To specify a DATETIME format, set the CallBackTime attibute to a quoted text string, such as
"8/12/2000 4:14 pm". This string must be normalized for your locale.

You can avoid the need to set CallBackTime to a DATETIME, by setting hour, minute, ampm, day,
month, and year attributes instead. These optional attributes make it easier to set time formats,
especially when the time format must be localized to a format other than US standard.

The HTML attributes below allow the script to set individual time values for the scheduled
callback. These are Minute, Hour, Day, Month, Year, and AMPM. If CallBackTime is not used,
each of the preceding attributes must be used.

Year Year when callback will performed.

Interaction Scripter Developer's Guide

92

Month Month when callback will performed.

Day Day of month when callback will be performed.

Hour Hour when callback will be performed.

Minute Minute when callback will be performed.

AMPM
Optionally specifies AM or PM to indicate time of day. If this attribute is not
specified, than a 24-hour format is assumed for Hour.

makeadditionalfollowupcall

This Boolean indicates whether the user should be put into "Additional Follow Up" status, in
support of a feature that allows an agent to dial additional calls while in that status. Setting this
parameter True puts the agent in "Additional Follow Up" status, so that the agent can dial other
contacts.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_CallComplete(){

 IS_Action_CallComplete.wrapupcode = 'Scheduled';

 IS_Action_CallComplete.callbacktime = when;

 IS_Action_CallComplete.abandoned = false;

 IS_Action_CallComplete.callback = function(error) {

 if (error) {

 console.error("IS_Action_CallComplete failed.");

 } else {

 console.log("IS_Action_CallComplete succeeded.");

 }

 }

}

Interaction Scripter Developer's Guide

93

Example 1

This example dispositions a call with a wrap-up code and then disconnects the call.

<head>

 <meta name="IS_Action_CallComplete">

 <meta name="IS_Action_Disconnect">

 <script language=”javascript”>

 function EndCall(WrapUpCode) {

 IS_Action_CallComplete.wrapupcode = WrapUpCode;

 IS_Action_CallComplete.click();

 IS_Action_Disconnect.click();

 }

 </script>

</head>

<body>

 <input type=”button” value="Call Successful" onclick=” EndCall
(‘Success’)”>

</body>

Example 2

In this example, a "Remove from Call List" button invokes the call completed action.The WrapUpCode
attribute is populated with an appropriate value before the call is dispositioned.

<head>

 <meta name="IS_Action_CallComplete">

 <script language=”javascript”>

 function RemoveFromList(WrapUpCode) {

 IS_Action_CallComplete.wrapupcode = WrapUpCode;

 IS_Action_CallComplete.click();

 }

 </script>

</head>

<body>

 <input type=”button” value="Remove from Call List"
onclick=”RemoveFromList(‘Deleted - Do Not Call’)”>

Interaction Scripter Developer's Guide

94

</body>

Example 3

This example demonstrates how to specify a callback time using the CallBackTime attribute:

<head>

 <meta name="IS_Action_CallComplete">

 <script language="javascript">

 function ScheduleCallback(when) {

 IS_Action_CallComplete.wrapupcode = 'Scheduled';

 IS_Action_CallComplete.callbacktime = when;

 IS_Action_CallComplete.abandoned = false;

 IS_Action_CallComplete.click();

 }

 </script>

 <body>

 <input type=”button” value="Call Back"
onclick="ScheduleCallback(‘03/15/2017 15:30’);">

 </body>

Interaction Scripter Developer's Guide

95

IS_Action_EndBreak

Definition

This action provides the ability to send an end break to Dialer to make the agent available to take Dialer
calls. This action is used in conjunction with the BeginBreak function. This action flags an agent's
status so that the agent will receive campaign calls. Be careful. IS_Action_EndBreak does not change the
agent's status from a DND (Do Not Disturb) state to an "available" state. Before calling
IS_Action_EndBreak, you must set the agent's status to an available condition using
IS_Action_ClientStatus.statusId. Otherwise, ACD calls will not be routed to the agent after he or she
returns from the break. Scripter will recognize click events from any HTML element whose name has an
associated action documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to
associate several buttons with the same action, then define the action using a meta element and call the
click event on the meta element from the button(s).

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_EndBreak() {

 IS_Action_EndBreak = function(error) {

 if (error) {

 console.error("IS_Action_EndBreak failed.");

 } else {

 console.log("IS_Action_EndBreak succeeded.");

 }

 }

}

Example 1

<body>

 <input type=button name="IS_Action_EndBreak" value="Take More Calls">

</body>

Example 2

Interaction Scripter Developer's Guide

96

<head>

 <meta name="IS_Action_EndBreak">

 <script language="javascript">

 function IS_EndBreak(p_availableStatus, p_page) {

 IS_Action_ClientStatus.statuskey = p_availableStatus;

 IS_Action_ClientStatus.click();

 IS_Action_EndBreak.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

<body>

 <input type=button value="Go Available"
onclick="IS_EndBreak(‘Available');">

</body>

Interaction Scripter Developer's Guide

97

IS_Action_EndNonDialerCallScripting

Definition

This action tells Scripter to resume automatic login of an Agent to a new campaign after transitioning
was delayed by IS_Action_BeginNonDialerCallScripting. Use IS_Action_BeginNonDialerCallScriptingto
delay transitions, and IS_Action_EndNonDialerCallScripting to terminate the delay. These are bracketing
functions so that multiple calls to IS_Action_BeginNonDialerCallScripting() and
IS_Action_EndNonDialerCallScripting() can be nested.

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_EndNonDialerCallScripting() {

 IS_Action_EndNonDialerCallScripting.callback = function(error) {

 if (error) {

 console.error("IS_Action_EndNonDialerCallScripting failed.");

 } else {

 console.log("IS_Action_EndNonDialerCallScripting succeeded.");

 }

 }

}

Interaction Scripter Developer's Guide

98

IS_Action_EstablishPersistentConnection

Definition

This action calls an Agent to establish a persistent connection. It has no effect unless the Agent is logged
into Scripter using a Remote Station or Remote Number with the persistent connection setting set. If
not, the action is ignored silently. It calls the Agent only if a persistent connection has not been
established. Afterwards it plays a .wav file to the Agent and then drops. The system keeps the audio
connection open since the Agent has a persistent remote connection. This establishes a persistent audio
path before a campaign call is routed to an agent. There are two reasons for doing this:

• The called party does not experience a delay before the Agent gets connected to them (while
the Agent's remote number is called the first time or whenever the persistent connection must
be re-established).

• During this delay, the called party does not hear ringback. Outbound calls will not play ringback
to the called party on the first call for a persistent remote Agent.

Script developers can hook this action into an initial page that is loaded only once, or they can invoke it
from a button that Agents press. As an alternative, this action can be integrated into a break mechanism
so that the connection is re-established whenever an Agent goes off break. Some customers routinely
set up an initial script page that causes the Agent to be called to establish persistent connections. This
built-in action simplifies this business practice.

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_EstablishPersistentConnection() {

 IS_Action_EstablishPersistentConnection.callback = function(error) {

 if (error) {

 console.error("IS_Action_EstablishPersistentConnection failed.");

 } else {

 console.log("IS_Action_EstablishPersistentConnection
succeeded.");

 }

 }

}

Notes

Interaction Scripter Developer's Guide

99

The wave file that plays when a persistent connection is established is set on the Skills and ACD tab for a
campaign, on the Persistent Connection expander.

This wave file should play a tone, or say something such as "connection established" to inform the agent
that a persistent connection has been established. When agents logon to Interaction Scripter Client, the
/initiate command line option can be used to initiate a persistent station connection. That option
causes the system to invoke the IS_Action_EstablishPersistentConnection API action, which calls the
agent to create a persistent audio path, before playing the wave audio to the agent.

Interaction Scripter Client login dialog

As a result, customers will no longer hear ringback on Dialer calls. Without this feature, the first call
received by a remote agent causes the customer to hear ringback, because a connection to the remote
station has to be established by having Telephony Services place a call to the agent. Afterwards, the
remote station remains off hook and the receives calls without ringback. Calling the action eliminates
ringback in all cases.

Example

<body>

 <input type=button name="IS_Action_EstablishPersistentConnection"
value="Establish Persistent Connection">

</body>

Interaction Scripter Developer's Guide

100

IS_Action_Logon

Definition

This action can globally log the agent into Dialer or into the specified campaign. More specifically, the
global logon performed by IS_Action_Logon will automatically log an agent into any campaigns that start
after the global logon occurs. It will NOT log the agent into any currently running campaigns.

Attributes

The IS_Action_Logon action accepts these attributes:

[campaign]

An optional attribute that can be used to specify a single campaign to log on to. If the Campaign
attribute is used, the IS_Action_Logon will ONLY log the agent into the specified campaign.

• If the agent has the Logon Campaign security right, the IS_Action_Logon action can NOT
provide a global login.

• IS_Action_Logon will not automatically log the agent into all currently running
campaigns. In order to accomplish that, use the IS_Action_LogonAll action.

• This action is normally used in conjunction with the RequestLogOff action to allow the
user to log on and off of Dialer without using the menu options in Interaction Scripter.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Logon() {

 IS_Action_Logon.campaign = "ACME Campaign";
 IS_Action_Logon.callback = function(error) {

 if (error) {

 console.error("IS_Action_Logon failed.");

 } else {

 console.log("IS_Action_Logon succeeded.");

 }

 }

}

Example 1

Interaction Scripter Developer's Guide

101

This action might be used by a "lobby" page script that allows selection of a campaign that then sends
IS_Action_Logon to log the agent into a selected campaign.

IS_Action_Logon.campaign = "Newspaper Sales";

Example 2

<head>

 <meta name="IS_Action_Logon">

 <script language="javascript">

 function IS_LogOn() {

 IS_Action_Logon.click();

 }

 </script>

 <body>

 <input type=button value="Logon" onclick="IS_LogOn ();">

 </body>

Interaction Scripter Developer's Guide

102

IS_Action_LogonAll

Definition

This action globally logs the agent into Dialer as well as all currently running campaigns. In addition, this
action will automatically log an agent into any campaigns that start after the global logon occurs. If the
agent has the Logon Campaign security right, the IS_Action_LogonAll action can NOT provide a global
login. However, it will log the agent into any currently running campaigns.

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_LogonAll() {

 IS_Action_Logon.callback = function(error) {

 if (error) {

 console.error("IS_Action_LogonAll failed.");

 } else {

 console.log("IS_Action_LogonAll succeeded.");

 }

 }

}

Example

<head>

 <meta name="IS_Action_LogonAll">

 <script language="javascript">

 function IS_LogOnAll() {

 IS_Action_LogonAll.click();

 }

 </script>

</head>

<body>

Interaction Scripter Developer's Guide

103

 <input type=button value="Logon All" onclick="IS_LogOnAll ();">

</body>

Interaction Scripter Developer's Guide

104

IS_Action_ManualOutboundCall

Definition

This action will initiate a preview call against an existing contact to either a supplied phone number, or
to a different phone number from the contact list of the supplied record.

Attributes

IS_Action_ManualOutboundCall accepts the following attributes:

i3identity

The I3_Identity of the record in the contact table. This value is exposed by the
IS_Attr_I3_IDENTITY attribute.

campaignid

The unique Id of the campaign. This value is exposed by the IS_Attr_CampaignId attribute.

campaignname

The name of the campaign. This value is exposed by the IS_Attr_CampaignName attribute.

contactcolumnId

The Contact Column ID or CCID in the <ContactList>_CCD table. This value will be in the json
string returned by the IS_Event_ContactDataLoaded event with the "CCID" property. Set this
value to -1 if you wish to pass in a different phone number.

phonenumber

The phone number you wish to dial if you set the ContactColumnId to -1.

overridemask

This uses a bit mask to indicate which Scrub processes you wish to override during the manual
outbound process. When you pass a number to the Manual Outbound Call Action, Dialer will
then check number several ways to determine if it should be dialed. These checks include if the
number is blocked by a Filter, or a Query Time Filter, if it is zone blocked, blocked because of
skills, blocked for going over a daily limit, violating minimum spacing, blocked by a Do Not Call
List, or blocked by campaign ownership. Each of these checks can be overridden by passing a
series of flags that have been OR-ed together. The flag values are as follows:

var FLAG_Filter = 0x01;

var FLAG_QueryTimeFilter = 0x02;

var FLAG_ZoneBlocking = 0x04;

var FLAG_Skills = 0x08;

var FLAG_DailyLimit = 0x10;

var FLAG_MinimumSpacing = 0x20;

var FLAG_DNC = 0x40;

var FLAG_CampaignOwnership = 0x80;

Interaction Scripter Developer's Guide

105

For example, IS_Action_ManualOutboundCall.OverrideMask = FLAG_Filter | FLAG_Skills] would
prevent Dialer from scrubbing your number against Filters and Skills, while allowing the
remaining checks to be active. If you wish to simply override everything, you can pass a value of
255 or 0xFF. The IS_Event_ManualOutboundCallStatus predictive event will also return a
parameter called BlockedFlag that will contain one of these bit masks. You can then have a
persistent variable that accumulates these flags and then pass it back to
IS_Action_ManualOutboundCall after each attempt to override previous blocks. For example:

overrideParameter = overrideParameter | args.BlockedFlag ;

IS_Action_ManualOutboundCall.OverrideMask = overrideParameter ;

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_ManualOutboundCall() {

 IS_Action_ManualOutboundCall.callback = function(error) {

 if (error) {

 console.error("IS_Action_LogonAll failed.");

 } else {

 console.log("IS_Action_LogonAll succeeded.");

 }

 }

}

Example

See Example 1 in Sample Interaction Connect Scripts.

Interaction Scripter Developer's Guide

106

IS_Action_MarkCallForFinishing

Definition

This action flags a Dialer call for redirection to a Finishing Agent. It calls the IS_Action_WriteData.click()
to update any new data gathered by the standard (opener) agent, and also calls the Predictive Dial COM
API method named IEICPredictiveServer2::MarkCallForFinishing, which sends a request to Dialer. In turn,
Dialer then sets the appropriate ACD category on the current call so that the interaction will be sent to a
Finishing Agent of that campaign. The API call writes the data to the database.

Important: do not use this action unless the Maintain ACD Skills On Transfer option is checked for
the System Configuration in Interaction Administrator.

Maintain ACD Skills On Transfer is disabled by default. When checked, ACD categories are maintained
when a call is transferred to a different workgroup or user. If this option is unchecked, it is possible for
calls to be ACD routed to non-Finishing agents. This can happen because of the way that Dialer handles
Finishing Agents:

• Finishing Agents log into the same ACD workgroup as regular agents. Dialer sets a special ACD
category on them and later sets the same ACD category on each finishing call so that finishing
calls are only be routed to finishing agents.

• When a regular agent transfers the finishing call to the ACD workgroup, the ACD categories are
cleared as the call leaves the agent queue. Since the ACD categories have been cleared, the call
is ACD routed to any agent in the workgroup, whether they are finishing or not. Checking the
option mentioned above ensures that ACD categories are always maintained when a call is
transferred, ensuring that only Finishing Agents will receive the call.

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Interaction Scripter Developer's Guide

107

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_MarkCallForFinishing() {

 IS_Action_MarkCallForFinishing.callback = function(error) {

 if (error) {

 console.error("IS_Action_MarkCallForFinishing failed.");

 } else {

 console.log("IS_Action_MarkCallForFinishing succeeded.");

 }

 }

}

Example

<head>

 <meta name="IS_Action_MarkCallForFinishing">

 <meta name="IS_Action_Transfer">

 <script language="javascript">

 function IS_MarkCallForFinishing(p_Transfer) {

 IS_Action_MarkCallForFinishing.click();

 if (p_Transfer != null) {

 IS_Action_Transfer.recipient = p_Transfer;

 IS_Action_Transfer.consult = false;

 IS_Action_Transfer.click();

 }

 }

 </script>

</head>

<body>

 <input type=button value="Mark Call For Finishing"
onclick="IS_MarkCallForFinishing(‘4000');">

</body>

Interaction Scripter Developer's Guide

108

IS_Action_PlacePreviewCall

Definition

This action places a call that has been previewed by a campaign running in a Preview mode. In Preview
mode, agents are presented with the next call record and given the choice to place the call, skip,
reschedule, or delete the call record. IS_Action_PlacePreviewCall should be used when an agent presses
a button to place the call. This action tells Dialer to place the call. Preview mode is sometimes used with
third party applications and by customers who want to change the number that the preview call is going
to place. Example 3 below indicates how to accomplish this. Scripter will recognize click events from any
HTML element whose name has an associated action documented in this API (e.g.:
"IS_Action_CallComplete"). If the script needs to associate several buttons with the same action, then
define the action using a meta element and call the click event on the meta element from the button(s).

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_PlacePreviewCall() {

 IS_Action_PlacePreviewCall.callback = function(error) {

 if (error) {

 console.error("IS_Action_PlacePreviewCall failed.");

 } else {

 console.log("IS_Action_PlacePreviewCall succeeded.");

 }

 }

}

Example 1

<body>

 <input type=button name="IS_Action_PlacePreviewCall" value="Place Call">

</body>

Example 2

Interaction Scripter Developer's Guide

109

<head>

 <meta name="IS_Action_PlacePreviewCall">

 <script language=javascript>

 function PlacePreviewCall() {

 IS_Action_PlacePreviewCall.click();

 }

 </script>

</head>

<body>

 <input type=button value="Place Call" onclick='PlacePreviewCall()'>

</body>

Example 3

<head>

 <meta name="IS_Action_PlacePreviewCall">

 <meta name="IS_Attr_NumberToDial">

 <script language="javascript">

 function Place(p_Number) {

 IS_Attr_NumberToDial.value = p_Number;

 // wait 5 seconds, then place the call

 setTimeout('PlacePreviewCallExt()', 5000);

 }

 function PlacePreviewCallExt() {

 IS_Action_PlacePreviewCall.click();

 }

 </script>

</head>

<body>

 <input type=button value="Place Preview Call"
onclick="Place(NumberToDial.value);">

 <input id="NumberToDial" name="NumberToDial" type="text" value="5554000"
/>

</body>

Interaction Scripter Developer's Guide

110

IS_Action_QueryContactList

Definition

Queries the specified contact list for records. Use with care. If used inappropriately this action could
impede the performance of a script, or affect the performance of a database server.

Attributes

All of the following attributes are required:

statement

The sql query that will run against the specified contact list.

connectionid

The id of the connection associated with the contact list in the dialer_config.xml. The
connectionId can be found in the dialer_config.xml by searching for a DIALEROBJECT with
type="10". Below is an example of the default connection in dialer_config.xml.

<DIALEROBJECT id="{A0000000-0000-0000-0000-000000000000}" type="10" rev="2">

 <PROPERTIES>

 <udldataset>example.udl</udldataset>

 <dbms>0</dbms>

 </PROPERTIES>

</DIALEROBJECT>

displayname

The name of the contact list as defined in Interaction Administrator.

tablename

The database table name of the contact list.

callback

This function will be called once the query has returned. The associated records will be returned
as a parameter of the callback.

Example

function queryContactList() {

 IS_Action_QueryContactList.tablename = “ContactListTable1”;

 IS_Action_QueryContactList.displayname = “ContactList1”;

 IS_Action_QueryContactList.connectionid = "{A0000000-0000-0000-0000-000000000000}";

 IS_Action_QueryContactList.statement = “select i3_identity, status, zone,
phonenumber from ContactListTable1”;

 IS_Action_QueryContactList.callback = contactsReturnedCallback;

Interaction Scripter Developer's Guide

111

 IS_Action_QueryContactList.click();

}

function contactsReturnedCallback(contacts) {

 //The returned contacts could be used here for various purposes, such as populating
a table with each record.

}

Interaction Scripter Developer's Guide

112

IS_Action_RequestBreak

Definition

IS_Action_RequestBreak initiates a break request for the Agent. Dialer will check to see if other agents
are available to handle any outstanding calls. If there are enough agents, the break request is granted.
The last agent logged into a campaign is granted a break after pending call(s) for the agent are
completed. When a break request is granted, the IS_Event_BreakGranted event is called so that the
script may redirect the browser to a break page.

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_RequestBreak() {

 IS_Action_RequestBreak.callback = function(error) {

 if (error) {

 console.error("IS_Action_RequestBreak failed.");

 } else {

 console.log("IS_Action_RequestBreak succeeded.");

 }

 }

}

Example

This example creates a "Break" button that invokes the "IS_Action_RequestBreak" script function.

<head>

 <meta name="IS_Action_RequestBreak">

 <script language=javascript>

 function Break() {

 IS_Action_RequestBreak.click();

 }

 </script>

Interaction Scripter Developer's Guide

113

</head>

<body>

 <input type=button value="Break" onclick="Break();">

</body>

Interaction Scripter Developer's Guide

114

IS_Action_RequestContactData

Definition

This action will initiate a request to dialer for additional contact columns associated with the current
dialer call along with PND table data for each contact column. When the data is loaded, the
IS_Event_ContactDataLoaded predictive event is called, the data will be passed as a JSON string in the
argument parameter.

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_RequestContactData() {

 IS_Action_RequestContactData.callback = function(error) {

 if (error) {

 console.error("IS_Action_RequestContactData failed.");

 } else {

 console.log("IS_Action_RequestContactData succeeded.");

 }

 }

}

Example

This example creates a Get Data button that invokes the IS_Action_RequestContactData script function.

<head>

 <meta name="IS_Action_RequestContactData">

 <script language=javascript>

 function RequestData() {

 IS_Action_RequestContactData.click();

 }

 </script>

</head>

Interaction Scripter Developer's Guide

115

<body>

 <input type=button value="Get Data" onclick="RequestData();">

</body>

Interaction Scripter Developer's Guide

116

IS_Action_RequestLogoff

Definition

This action requests an Agent logout. When the logoff request is granted, Interaction Scripter closes the
outbound tab. It accepts an optional campaigns attribute, which can be used to request a logout for
specific campaigns. If that attribute is not populated, then the action requests a logout for all campaigns.
The format of the attribute is a list of campaign names separated by commas. If a campaign name
contains a comma it can be escaped by encoding it for HTML e.g. ,

Attributes

The IS_Action_RequestLogoff element has these attributes:

campaigns

An optional list of campaign names separated by commas, to log out of.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_RequestLogoff() {

 IS_Action_RequestLogoff.campaigns = "Acme Collections";
 IS_Action_RequestLogoff.callback = function(error) {

 if (error) {

 console.error("IS_Action_RequestLogoff failed.");

 } else {

 console.log("IS_Action_RequestLogoff succeeded.");

 }

 }

}

Example

This example creates a "Logoff" button that invokes the "IS_Action_RequestLogoff" script function.

<head>

 <meta name="IS_Action_RequestLogoff">

 <script language=javascript>

Interaction Scripter Developer's Guide

117

 function Logoff() {

 IS_Action_RequestLogoff.click();

 }

 </script>

</head>

<body>

 <input type=button value="Logoff" onclick="Logoff();">

</body>

Interaction Scripter Developer's Guide

118

IS_Action_SkipPreviewCall

Definition

This function is essentially equivalent to using IS_Action_CallComplete, but with a wrap up code of
‘Skipped – Agent Skip’. This action skips a call that has been previewed. This action is used when the
calling mode is set to Preview—whereby agents are presented with the next call record and given the
choice to place the call, skip, reschedule, or delete the call record. IS_Action_SkipPreviewCall should be
used when an agent presses a button to skip the call. It tells Dialer that another preview call is needed.

This action does not make the record uncallable under any circumstances. Once
IS_Action_SkipPreviewCall has been initiated, no further changes can be made to the Dialer
attributes. All element data is written to the server. If an update occurs to an element after this action,
the update will be lost. Scripter will recognize click events from any HTML element whose name has an
associated action documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to
associate several buttons with the same action, then define the action using a meta element and call the
click event on the meta element from the button(s).

Attributes

The IS_Action_SkipPreviewCall element has the following attributes:

wrapupcode

The wrap up code to be used for the disposition. This should be the full wrap up code e.g.
Skipped - Agent Skip.

[abandoned]

The optional Abandoned attribute indicates even though the outbound call achieved call
connect and routed to an Agent, the Dialer should consider it abandoned from a pacing,
compliance and reporting perspective. The default value of this attribute is false.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_SkipPreviewCall() {

 IS_Action_SkipPreviewCall.wrapupcode = "Skipped - Agent Skip";
 IS_Action_SkipPreviewCall.callback = function(error) {

 if (error) {

 console.error("IS_Action_SkipPreviewCall failed.");

 } else {

 console.log("IS_Action_SkipPreviewCall succeeded.");

 }

Interaction Scripter Developer's Guide

119

 }

}

Example 1

This is an example of a "Skip Call" button that skips the Preview call that has been presented to the
agent.

<body>

 <input type=button name="IS_Action_SkipPreviewCall" value="Skip Call">

</body>

Example 2

This is an example of a "Skip Call" button that invokes the "SkipCall" script function. The WrapUpCode
attribute is manually populated with the appropriate value before the call is dispositioned.

<head>

 <meta name="IS_Action_SkipPreviewCall">

 <script language=javascript>

 function SkipCall() {

 IS_Action_SkipPreviewCall.wrapupcode = "Skipped - Agent Skip";

 IS_Action_SkipPreviewCall.click();

 }

 </script>

</head>

<body>

 <input type=button value="Skip Call" onclick='SkipCall()'>

</body>

Example 3

<head>

 <meta name="IS_Action_SkipPreviewCall">

 <script language="javascript">

 function IS_SkipPreviewCall(p_page) {

Interaction Scripter Developer's Guide

120

 IS_Action_SkipPreviewCall.wrapupcode = "Skipped - Agent Skip";

 IS_Action_SkipPreviewCall.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

<body>

 <input type=button value="Skip Preview Call"
onclick="IS_SkipPreviewCall(null);">

</body>

Interaction Scripter Developer's Guide

121

IS_Action_Stage

Definition

This action is used to set stages within a predictive campaign script. It moves a call to a new
stage. Staging is normally only used in predictive campaigns, it does not apply to power or preview
campaigns. The staging values correlate with the values set in the staging container in Interaction
Administrator that is assigned to the active campaign. A campaign call can be segmented into various
stages that an agent may traverse during a campaign call. While a campaign is active, Interaction Dialer
monitors agent performance per stage and maintains values that allow Outbound Server to predict the
probability of the agent finishing the call in that stage, as well as how long the agent is expected to be in
that stage. For example, the following table depicts how a sample telemarketing campaign might be
staged:

Id Name Probability Adjusted Call Length

Stage 1 Introduction 67% 37 seconds

Stage 2
Preliminary Sales
Pitch 75% 1 minute, 42 seconds

Stage 3
Detailed Product
Description 80% 5 minutes, 48 seconds

Stage 4 Billing information 100% 2 minutes, 30 seconds

The Probability Value is the likelihood of the call ending in that stage for a particular agent. Each agent
has a table of values (as in the example above) that corresponds to that agent's personal statistical
summary while the agent is logged into a campaign. Therefore, if one agent takes longer in a particular
stage than another agent, the algorithm adjusts accordingly.

Tip—the topic titled 'Stage Sets view' in Interaction Dialer Manager Help explains how to define
stages.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Attributes

The IS_Action_Stage element has the following attribute:

stage

The call stage number to set. The call stage number can be any number in the range of 0-
10,000. We recommend that you make stage numbers consecutive. (E.g. 1, 2, 3, 4, 5; not 1, 2, 5,
20, 45). This number should match the value of a stage from the Stages associated with the
campaign. It cannot match the stage name, only the numeric value. If no matching stage value

Interaction Scripter Developer's Guide

122

is found, Interaction Dialer will choose a stage name (e.g.: "Auto-Added Stage #), where # is the
specified stage value.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_Stage() {

 IS_Action_Stage.stage = "3";
 IS_Action_Stage.callback = function(error) {

 if (error) {

 console.error("IS_Action_Stage failed.");

 } else {

 console.log("IS_Action_Stage succeeded.");

 }

 }

}

Example 1

This is an example of a button that moves a call to the next stage (which, in this case, is Stage 1).

<body>

 <input type=button name="IS_Action_Stage" value="Stage 1" Stage="1">

</body>

Example 2

This is an example of a button that invokes the "Stage" script function. The "Stage" script function
moves a call to the next stage (which, in this case, is Stage 3).

<head>

 <meta name="IS_Action_Stage">

 <script language=javascript>

 function Stage(stageNumber) {

Interaction Scripter Developer's Guide

123

 IS_Action_Stage.stage = stageNumber;

 IS_Action_Stage.click();

 }

 </script>

</head>

<body>

 <input type=button value="Stage 3" onclick='Stage("3")'>

</body>

Example 3

<head>

 <meta name="IS_Action_Stage">

 <script language="javascript">

 function IS_SetCurrentStage(p_page, p_stage) {

 IS_Action_Stage.stage = p_stage;

 IS_Action_Stage.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

<body>

 <input type=button value=" Next Page" onclick="IS_SetCurrentStage
(‘ClosingSale.htm', 4);">

</body>

Interaction Scripter Developer's Guide

124

IS_Action_StartReceivingCalls

Definition

When Scripter Client is started with the /nostartreceiving optional command line parameter, an agent
can log into Interaction Scripter and set status to available, but Interaction Dialer will not place calls for
that agent until the IS_Action_StartReceivingCalls action is called. This feature is used primarily with
Preview campaigns.

• Scripts should not call this action unless the /nostartreceving scripter command line option is
used.

• IS_Action_StartReceivingCalls should only be called once in the script when the agent or script is
first ready to receive calls. Calling it more than once can cause problems.

• If you want the IS_Action_StartReceivingCalls Predictive action to function on a per campaign
basis rather than on a per agent basis, you will need to use the Dialer StartReceivingCalls Per
Campaign server parameter with the value set to 1. Keep in mind that this action only works for
agents who have the Logon Campaign right.

• For additional information, see the Server Parameters topic in the Dialer Manager Help system.

Attributes

[campaigns]

An optional, comma separated list of campaign names to notify Dialer the agent is ready to start
receiving calls from. To use this attribute, the "Dialer StartReceivingCalls Per Campaign" server
parameter must to be enabled.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_StartReceivingCalls() {

 IS_Action_StartReceivingCalls.callback = function(error) {

 if (error) {

 console.error("IS_Action_StartReceivingCalls failed.");

 } else {

 console.log("IS_Action_StartReceivingCalls succeeded.");

 }

 }

}

Interaction Scripter Developer's Guide

125

Example

<head>

 <meta name="IS_Action_StartReceivingCalls">

 <script language=javascript>

 function

 StartReceivingCalls() {

 IS_Action_StartReceivingCalls.click();

 }

 </script>

</head>

<body>

 <input type=button value="StartReceivingCalls"
onclick="StartReceivingCalls();">

</body>

Example 2

IS_Action_StartReceivingCalls.campaigns = "Campaign1,Campaign2,Campaign3";

IS_Action_StartReceivingCalls.click();

Interaction Scripter Developer's Guide

126

IS_Action_TransferToAttendant

Definition

Transfers the active Dialer call to an outbound Attendant profile.

Attributes

attendantprofile

The name of the outbound Attendant profile to which the call will be transferred.

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_TransferToAttendant() {

 IS_Action_TransferToAttendant.attendantprofile = "Outbound IVR";
 IS_Action_TransferToAttendant.callback = function(error) {

 if (error) {

 console.error("IS_Action_TransferToAttendant failed.");

 } else {

 console.log("IS_Action_TransferToAttendant succeeded.");

 }

 }

}

Example

IS_Action_TransferToAttendant.attendantprofile = "Outbound IVR";

IS_Action_TransferToAttendant.click();

Interaction Scripter Developer's Guide

127

IS_Action_WriteData

Definition

This action saves information associated with a predictive call to the Dialer cache. Use this action before
transferring a call, if the agent is transferring to a supervisor or Finishing Agent and MarkCallForFinishing
is not used. This allows data to be updated in cache before the transfer action is performed so that the
new agent will receive the updated attributes. You do not need to call IS_Action_WriteData at the end
of each call, unless the call is to be transferred. Interaction Scripter automatically saves predictive data
when navigating to a new page. The IS_Action_WriteData function should not be called before
navigating between pages. Scripter will recognize click events from any HTML element whose name has
an associated action documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to
associate several buttons with the same action, then define the action using a meta element and call the
click event on the meta element from the button(s).

Attributes

[callback]

The callback property ensures that this action executes asynchronously in Interaction Connect.
Starting with 2018 R3, all Interaction Scripter actions (IS_Actions) provide a callback property for
use in Connect scripts only. In the example below, statements inside the highlighted callback
function block execute only after the action completes. The callback will return an error if the
action fails. See Writing custom scripts for Interaction Connect or Scripter .NET.

Here's how to use the .callback property in a script for Interaction Connect:

function IS_Action_WriteData() {

 IS_Action_WriteData.callback = function(error) {

 if (error) {

 console.error("IS_Action_WriteData failed.");

 } else {

 console.log("IS_Action_WriteData succeeded.");

 }

 }

}

Example 1

<head>

 <meta name="IS_Action_WriteData">

</head>

<body>

Interaction Scripter Developer's Guide

128

 <input name="IS_Action_Transfer" type=button value="Transfer to
Supervisor" consult="false" recipient="101"
onclick="IS_Action_WriteData.click();">

</body>

Example 2

<head>

 <meta name="IS_Action_Transfer">

 <meta name="IS_Action_WriteData">

 <script language=javascript>

 function SupervisorTransfer() {

 IS_Action_WriteData.click();

 IS_Action_Transfer.recipient = "101";

 IS_Action_Transfer.consult = "false";

 IS_Action_Transfer.click();

 }

 </script>

</head>

<body>

 <input type=button value="Transfer to Supervisor"
onclick='SupervisorTransfer()'>

</body>

Example 3

<head>

 <meta name="IS_Action_WriteData">

 <script language="javascript">

 function IS_WriteData(p_page) {

 IS_Action_WriteData.click();

 if (p_page != null) location.href = p_page;

 }

 </script>

</head>

Interaction Scripter Developer's Guide

129

<body>

 <input type=button value="Update Data" onclick="IS_WriteData();">

</body>

Interaction Scripter Developer's Guide

130

Interaction Scripter Events

Interaction Scripter Events

Events are notification messages from the CIC server that trigger script functions. For example, an event
can provide notification that a queue on the server has changed. When a call is placed on a queue, this
event changes the queue, generating an event message.

Standard Events

Standard events are generalized and can be used in any script, including scripts for blended
environments. These events are not directly associated with being logged into Dialer, though they can
be used when logged into Dialer too. Standard events are generated when queues change.

Predictive Events

Predictive events are notification events associated with campaign activities for Predictive, Power or
Preview campaigns. Predictive events are raised by Scripter when an agent is logged into Dialer. All
predictive events are functions declared in a script that are called when an event occurs.

Interaction Scripter Developer's Guide

131

Standard Events

Standard Events

Standard events are generated when queues change. Interaction Scripter standard events are
generalized and can be used in a script when implementing a blended environment. These events are
not directly associated with being logged into Dialer, though they can be used when logged into Dialer
too.

Event Definition

IS_Event_ChatInitialized

The IS_Event_ChatInitialized event is emitted after a chat is
initialized by an IS_Action_PlaceChat action.

IS_Event_QueueObjectAdded

This event occurs when a queue object has been added to the
user's queue. If your application's interface displays a call
queue, this event provides notification that a call should be
added to the list.

IS_Event_QueueObjectChanged

This event provides notification that the state of a queue object
or call object has changed in the user's queue.

IS_Event_QueueObjectRemoved

This event occurs when a queue object is removed from the
user's queue. If your application's interface displays a call
queue, this event provides notification that a call can be
removed from the list.

Interaction Scripter Developer's Guide

132

IS_Event_ChatInitialized

Definition

The IS_Event_ChatInitialized event is emitted after a chat is initialized by an IS_Action_PlaceChat action.
Your script should listen for this event to ensure that chat initialization is complete before proceeding.

Attributes

interactionid

The interaction id of the created chat interaction.

Example:

function IS_Event_ChatInitialized(interactionId) {

 if (chatObjects[interactionId] === undefined) {

 chatObjects[interactionId] = scripter.createChatObject();

 chatObjects[interactionId].chatObjectInitializedHandler =
chatInitialized;

 chatObjects[interactionId].id = interactionid;

 }

}

Interaction Scripter Developer's Guide

133

IS_Event_QueueObjectAdded

Definition

This event is raised by Scripter when a queue object is added to the user's queue. Scripter will listen for
calls and chats being added to the users' queue. If your application's interface displays a call queue,
IS_Event_QueueObjectAdded provides notification that a call should be added to the list.

Attributes

The QueueName and ObjectId parameters are optional. If you use them, you must specify both
parameters.

QueueName

The name of the call queue.

ObjectId

The object id of the new object in the queue.

Syntax

function IS_Event_QueueObjectAdded(queueName, ObjectId)

function IS_Event_QueueObjectAdded()

Example

<head>

 <script language=javascript>

 function IS_Event_QueueObjectAdded(queueName, ObjectId) {

 // add an object to the queue display

 // insert other code here as needed...

 }

 </script>

</head>

Interaction Scripter Developer's Guide

134

IS_Event_QueueObjectChanged

Definition

This event provides notification that the state of a queue object or call object has changed in the user's
queue. This event is raised by Scripter when the object that was added on the user's queue changes
state. For example the call may go from a "Connected" state to a "Hold" state after issuing a
IS_Action_Hold on the call.

Attributes

The QueueName and ObjectId parameters are optional. If you use them, you must specify both
parameters.

QueueName

The name of the call queue.

ObjectId

The object id of the object being changed.

Syntax

function IS_Event_QueueObjectChanged(QueueName, ObjectId)

function IS_Event_QueueObjectChanged()

Example

<head>

 <script language=javascript>

 function IS_Event_QueueObjectChanged(QueueName, ObjectId) {

 // update the queue object displayed on the screen

 // insert other code here as needed...

 }

 </script>

</head>

Interaction Scripter Developer's Guide

135

IS_Event_QueueObjectRemoved

Definition

This event occurs when a queue object is removed from the user's queue. If your application's interface
displays a call queue, IS_Event_QueueObjectRemoved provides notification that a call can be removed
from the list.

This event is raised by Scripter when the object is either destroyed, (usually 2 minutes after the call is
disconnected), or when the call is transferred off of the user's queue, such as when transferred to a
finishing agent.

Attributes

The QueueName and ObjectId parameters are optional. If you use them, you must specify both
parameters.

QueueName

The name of the call queue.

ObjectId

The object id of the call being removed.

Syntax

function IS_Event_QueueObjectRemoved(QueueName, ObjectId)

function IS_Event_QueueObjectRemoved()

Example 1

<head>

 <script language=javascript>

 function IS_Event_QueueObjectRemoved(QueueName, ObjectId) {

 // remove this object from the queue display

 // insert other code here as needed...

 }

 </script>

</head>

Example 2

Interaction Scripter Developer's Guide

136

This example can be used as an include file in a web page to watch for the above events and update the
interface as needed.

<head>

 <script language="javascript">

 // global call object

 var mg_callObj = scripter.createCallObject();

 function IS_Event_QueueObjectAdded(p_QueueName, p_ObjectId) {

 mg_callObj.Id = p_ObjectId.

 }

 function IS_Event_QueueObjectChanged(p_QueueName, p_ObjectId) {

 // current object state

 alert(mg_callObj.stateString);

 }

 function IS_Event_QueueObjectRemoved(p_QueueName, p_ObjectId) {

 alert(‘Object Removed’);

 }

 </script>

</head>

Interaction Scripter Developer's Guide

137

Predictive Events

Predictive Events

Predictive Events are notification messages from the server, such as a new call on a queue. All predictive
events are functions that you declare and are called when an event occurs. Predictive events are events
associated with campaign activities. They are usually associated with Predictive, Power or Preview
campaigns and only get raised by Scripter when an agent is logged into Dialer.

Event Definition

IS_Event_BreakGranted

This event tells a script that an IS_Action_RequestBreak
request has been granted, so that the script can redirect
the browser to a break page.

IS_Event_ContactDataLoaded

This event is specifically designed for use with the
IS_Action_RequestContactData action.

IS_Event_DataPop

This event is fired in response to new incoming data from a
predictive or preview call. This event is only called if there
is no IS_Event_NewPredictiveCall event handler defined
(for preview if no IS_Event_PreviewDataPop or if no
IS_Event_NewPreviewCall).

IS_Event_ManualOutboundCallStatus

This event is specifically designed for use with the
IS_Action_ManualOutboundCall action.

IS_Event_NewPredictiveCall

This event is fired when a new predictive call is placed in a
queue. Use the IS_Attr_CampaignName attribute to
identify the name of the campaign.

IS_Event_NewPreviewCall

This event is fired when a new preview call is placed in a
queue.

IS_Event_PreviewCallSkipped

This event is emitted when a preview call is successfully
skipped.

IS_Event_PredictiveCallReleased

This event is generated when a call is disconnected,
transferred, or stolen from the call queue.

IS_Event_PreviewDataPop

This event is useful in preview dialing
mode. IS_Event_PreviewDataPop provides
notification that the client can display a customer record,
before the call is placed. This allows the agent to review

Interaction Scripter Developer's Guide

138

the client record before pushing a button to initiate the
call.

PreviewTimeout Events

There are three PreviewTimeout events. These are
distinctive Predictive Events that are specifically designed
for use with Preview campaigns that use a preview
countdown timer.

Interaction Scripter Developer's Guide

139

IS_Event_BreakGranted

Definition

This event tells a script that a IS_Action_RequestBreak request has been granted, so that the script can
redirect the browser to a break page. Dialer grants break requests if other agents available to handle
any outstanding calls. The last agent logged into a campaign is granted a break after all pending call(s)
for the agent are completed.

Attributes

None.

Example

<head>

 <script language=javascript>

 function IS_Event_BreakGranted() {

 // navigate to the on break page

 location.href = "AgentBreak.html";

 }

 </script>

</head>

Interaction Scripter Developer's Guide

140

IS_Event_ContactDataLoaded

Definition

The IS_Event_ContactDataLoaded event is a Predictive Event that is specifically designed for use with
IS_Action_RequestContactData. When Dialer has acquired all the contact Data for the current record it
will send the IS_Event_ContactDataLoaded event to a custom script along with a JSON string containing
all the data as an argument.

Attributes

JsonString

A JSON formatted string containing all the data from the PND table, along with the Contact
Column Name, Contact Column ID, Phone Number and the phone number Type. If an exception
is thrown while attempting to load the data, there will be an error property instead of data
returned. This error can be trapped and logged or displayed on the script.

Example

<head>

 <script language=javascript>

 var TraceLevel = {

 Error: 0,

 Warning: 1,

 Status: 2,

 Note: 3

 };

 function IS_Event_ContactDataLoaded(json) {

 scripter.trace(json, TraceLevel.Note)

 var obj = eval("(" + json + ")");

 if (obj.error) {

 scripter.trace('error = ' + obj.error, TraceLevel.Error);

 }

 var name = obj.NAME;

 var ccid = obj.CCID;

 // insert other code here as needed...

 }

 </script>

Interaction Scripter Developer's Guide

141

</head>

Sample JSON

[{

"BLOCKINGRESULT":"0",

"CCID": 575,

"I3_ATTEMPTS": 0,

"I3_ATTEMPTSABANDONED": 0,

"I3_ATTEMPTSBUSY": 0,

"I3_ATTEMPTSFAX": 0,

"I3_ATTEMPTSMACHINE": 0,

"I3_ATTEMPTSNOANSWER": 0,

"I3_ATTEMPTSREMOTEHANGUP": 0,

"I3_ATTEMPTSRESCHEDULED": 0,

"I3_ATTEMPTSSITCALLABLE": 0,

"I3_ATTEMPTSSYTEMHANGUP": 0,

"I3_DNCCOMEXPIRATION": "",

"I3_STATUS": "",

"I3_SUBSTATUS": "",

"I3_ZONE": "",

"NAME": "PHONE",

"PHONENUMBER": "3175557188",

"PHONENUMBERTYPE": "",

"Sex": "",

"State": "",

"TimeZone": ""

}]

Dialer will pre scrub numbers for zone blocking and DNC blocking. If the numbers meet either of these
conditions, the BLOCKINGRESULT parameter will have a value that corresponds to the blocked flags.
(See IS_Event_ManualOutboundCallStatus BlockedFlag attribute) You can submit that blocked flag back
to IS_Action_ManualOutboundCall as the override parameter and the call will be placed. If you try to
place a call that has a BLOCKINGRESULT value without submitting the override parameter, the call will
fail as invalid.

Interaction Scripter Developer's Guide

142

IS_Event_DataPop

Definition

This event is fired in response to new incoming data from a predictive or preview call. Its prototype is
IS_Event_DataPop(Names, Values). This event is only called if there is no IS_Event_NewPredictiveCall
event handler defined (for preview if no IS_Event_PreviewDataPop or if no IS_Event_NewPreviewCall).
This event is raised when the data that is associated with the predictive or power dialed call is presented
to the agent. This event is passed a JavaScript array of names and values representing the column names
and column values in the call list the campaign is dialing from.

Attributes

Names

A JavaScript array of the Dialer attribute names.

Values

A JavaScript array of the Dialer attribute values.

Example 1

<head>

 <meta name="IS_Action_SelectPage">

 <meta name="IS_Action_SetFocus">

 <script language=javascript>

 function IS_Event_DataPop(Names, Values) {

 // move this tab page to the top and set

 // focus to this application window

 IS_Action_SelectPage.click();

 IS_Action_SetFocus.click();

 }

 </script>

</head>

Example 2

This sample script iterates through the JavaScript array and writes out the column name and its
corresponding value.

Interaction Scripter Developer's Guide

143

<head>

 <script language="javascript">

 // global call object

 function IS_Event_DataPop(p_Names, p_Values) {

 var x;

 for (x in p_Names) {

 document.write(‘Column Name: >’+p_Names[x] + ‘ -- - Column
Value: ’+p_Values[x]);

 }

 }

 </script>

</head>

Interaction Scripter Developer's Guide

144

IS_Event_ManualOutboundCallStatus

Definition

The IS_Event_ManualOutboundCallStatus event is a predictive event that is specifically designed for use
with the IS_Action_ManualOutboundCall predictive action. When Dialer has finished processing the
Manual Outbound Call, it will send the IS_Event_ManualOutboundCallStatus event to a custom script.

Attributes

The IS_Event_ManualOutboundCallStatus event has four attributes that are passed in as an argument
object.

Identity

This is a string that holds the unique identifier of the record as defined in the contact list
table, I3_IDENTITY.

StatusName

A string that indicates the status of manual outbound call processing: CallPlaced,
CallComplete, PolicyCompleted, CallBlocked, PreviouslyDialed,
ContactBlocked, ContactNotFound, ContactUncallable, InvalidPhoneNumber,
InvalidCampaign, InvalidAgent, AgentNotIdle, InternalError, or
PlaceCallFailed.

Status

Status returns a number corresponding to the StatusName string.

UncallableStatus

This is the status value stored in the contact table if the status is ContactUncallable.

CallBlockedDescriptionString

If the call is blocked, then this string will indicate the reason the call was blocked as a localized
string that you can pass to your script.

BlockedFlag

This is the value of the flag that was blocked.

Dec Hex Meaning

1 0x01 Blocked by Filter

2 0x02 Blocked by Query Time Filter

4 0x04 Blocked by Time Zone

8 0x08 Blocked by skills

16 0x10 Blocked by the Daily Limit value

Interaction Scripter Developer's Guide

145

32 0x20 Blocked by minimum spacing between dials

64 0x40 Blocked by Do Not Call rules

128 0x80 Blocked by campaign ownership

This value can be passed back to IS_Action_ManualOutboundCall as the overridemask in order
to make the call again, but to ignore the rule that was just blocked. If you OR multiple Flags
together, you can override multiple checks against the number.

Example

var OverrideCode = {

 "None": 0x00,

 "Filter": 0x01,

 "QueryTimeFilter": 0x02,

 "Zone": 0x04,

 "Skills": 0x08,

 "DailyLimit": 0x10,

 "MinimumSpacing": 0x20,

 "PNDStatus": 0x40,

 "DNC": 0x80,

 "CampaignOwndership": 0x100

};

var TraceLevel = {

 Error: 0,

 Warning: 1,

 Status: 2,

 Note: 3

};

var overrideAccumulator = 0x0;

var lastWrapUpCode = "";

var dialedNumber;

var calledNumberArray = [];

Interaction Scripter Developer's Guide

146

function EndCall(WrapUpCode) {

 if (WrapUpCode == 'Failure') {

 var answer = confirm("Would you like to call another number?")

 if (answer) {

 calledNumberArray.push();

 lastWrapUpCode = WrapUpCode;

 IS_Action_RequestContactData.click();

 scripter.trace("ContactDataRequested", TraceLevel.Note);

 // Once RequestContactData is called, a response will

 // trigger IS_Event_ContactDataLoaded

 return;

 }

 }

 CalledNumberArray = [];

 CompleteCall(WrapUpCode);

}

function CompleteCall(WrapUpCode) {

 IS_Action_CallComplete.WrapUpCode = WrapUpCode;

 IS_Action_CallComplete.click();

 IS_Action_Disconnect.click();

}

function IS_Event_ContactDataLoaded(args) {

 scripter.trace(args,

 TraceLevel.Note) // Raw json string will be traced to the log.

 var contactDataObject;

 try {

 JSON.parse(args, contactDataObject); // This does not work in older
IE browsers;

 } catch (err) {

 contactDataObject = eval("(" + args + ")");

 // JSON is not supported in older iE browsers.

 }

 // If there is an error on the server, the result object will have an
error property.

 if (contactDataObject.error) {

Interaction Scripter Developer's Guide

147

 scripter.trace('error= ' + contactDataObject.error,
TraceLevel.StatusName);

 }

 var NextContactToCall;

 for (var i = 0; i < contactDataObject.length; i++) {

 if ($.inArray(contactDataObject[i].PHONENUMBER, calledNumberArray))

 continue;

 if (contactDataObject[i].OVERRIDECODE & OverrideCode.Zone ==
OverrideCode.Zone) {

 var answer = confirm("This number is blocked by Time Zone Rules,
would you still like to dial it?")

 if (!answer)

 continue;

 else

 overrideAccumulator = overrideAccumulator | OverrideCode.Zone

 }

 if (contactDataObject[i].OVERRIDECODE & OverrideCode.DNC ==
OverrideCode.DNC) {

 var answer = ok("This number is on the Do Not Call List, would
you still like to dial it?")

 if (!answer)

 continue;

 }

 NextContactToCall = contactDataObject[i];

 continue;

 }

}

Interaction Scripter Developer's Guide

148

IS_Event_NewPredictiveCall

Definition

This event is raised by Scripter when a predictive call is assigned to the agent by ACD. The event passes
in the CallId of the call that is added to the users queue. The IS_Event_QueueObjectAdded event is also
raised along side this event, since a call object has been added to the user's queue. This event is usually
set up in the waiting for call page, to either listen for a predictive call or a preview call, and then redirect
the agent to the appropriate page. Its prototype is IS_EventNewPredictiveCall(CallId).

Use the IS_Attr_Campaign attribute to identify the name of the campaign If names/values are required
as a dynamic list, use IS_Event_DataPop instead of IS_Event_NewPredictiveCall. If
IS_EventNewPredictiveCall is not defined, IS_Event_DataPop will be called by default.

Attributes

CallId

Call identifier of the new call on the user's queue.

Example

<head>

 <meta name="IS_Attr_CallId">

 <script language=javascript>

 function IS_Event_NewPredictiveCall(CallId) {

 // navigate to the data display page

 location.href = "intro.html";

 }

 </script>

</head>

Interaction Scripter Developer's Guide

149

IS_Event_NewPreviewCall

Definition

This event is fired when a new preview call is placed in a queue. It is fired after
IS_Action_PlacePreviewCall has been invoked by a script. Its prototype is
IS_Event_NewPreviewCall(CallId). Use the IS_Attr_Campaign attribute to identify the name of the
campaign. If IS_EventNewPreviewCall is not defined, IS_Event_DataPop will be called by default. It is
raised by Scripter when a preview call is presented to the agent. Note that this event is not the data pop,
but the event that is raised after the agent issued an IS_Action_PlacePreviewCall function call.

Attributes

CallId

Call identifier of the new call on the user's queue.

Example

<head>

 <script language=javascript>

 function IS_Event_NewPreviewCall(CallId) {

 // navigate to the data display page

 location.href = "intro.html";

 }

 </script>

</head>

Interaction Scripter Developer's Guide

150

IS_Event_PreviewCallSkipped

Definition

This event is emitted when a preview call is successfully skipped. This event will be emitted regardless of
whether the call is skipped through the skip action in a custom script or through the skip button in the
optional command toolbar at the bottom of the script.

Attributes

None.

Example

In a custom script, the event can be handled as follows:

function IS_Event_PreviewCallSkipped()

{ console.warn("preview skip was pressed!"); }

Interaction Scripter Developer's Guide

151

IS_Event_PredictiveCallReleased

Definition

This event is generated when a call is disconnected, transferred, or stolen from the call queue. Its
prototype is IS_Event_PredictiveCallReleased(CallId). It is generated by Scripter when a call is either
disconnected or transferred from the user's queue. The CallId of the disconnected call is passed to this
event. This event can be used as a way to make sure an agent dispositions a call. For example, if the call
was disconnected, and there was no disposition, you can set up a timer to alert the user that the call
was disconnected and they need to disposition the call.

Attributes

CallId

CallId is a string that contains the id of the callObject that has been disconnected.

Example

<head>

 <script language=javascript>

 function IS_Event_PredictiveCallReleased(CallId) {

 // this is not a page where an agent can transfer a call

 alert("The call has been disconnected, or stolen.");

 }

 </script>

</head>

Interaction Scripter Developer's Guide

152

IS_Event_PreviewDataPop

Definition

This event is called by Scripter in Preview dialing mode. It is raised by Scripter when a preview data pop
is presented to the agent. This event occurs before the IS_Event_NewPreviewCall.
IS_Event_PreviewDataPop provides notification that the client can display a customer record, before the
call is placed. This allows the agent to review the client record before pushing a button to initiate the
call. Its prototype is IS_Event_PreviewDataPop(Names, Values). If IS_EventPreviewDataPop is not
defined, IS_Event_DataPop will be called by default.

This event presents a JavaScript array of names and values that are associated with the preview call.
When running in preview mode, the data is presented to the agent first, then the agent determines
whether or not to place the call.

Attributes

Names

A JavaScript array of the Dialer attribute names.

Values

A JavaScript array of the Dialer attribute values

Example 1

<head>

 <script>

 function IS_Event_PreivewDataPop(Names, Values) {

 // do something here

 location.href = "PreviewPop.htm";

 }

 </script>

</head>

Example 2

The example below is a typical waiting for call page, that listens for Preview and Predictive calls.
Typically this type of page redirects the agent to another page to display the data that is associated with
the call. See Interaction Scripter Attributes for information about retrieving values from call data.

<head>

 <script>

 function IS_Event_PreivewDataPop(Names, Values) {

Interaction Scripter Developer's Guide

153

 // do something here

 location.href = "PreviewPop.htm";

 }

 </script>

</head>

Interaction Scripter Developer's Guide

154

PreviewTimeout Events

PreviewTimeout Events

PreviewTimeout events are Predictive Events that are specifically designed for use with Preview
campaigns that display a preview countdown timer. Using a campaign property designed specifically for
Preview campaigns and set up in Dialer Manager, you can enable and configure a preview countdown
timer that displays on the screen and indicates how much time agents have to review the preview pop
before the contact is automatically dialed.

When the preview countdown timer is enabled, Dialer will send the following events to
InteractionScripter.Net, which will in turn send them to the script. You can then use these events in a
custom script to trigger additional processes. (Keep in mind that a countdown timer is independent of
the script, but is only used for Preview campaigns.) These events are distinctive because rather than
receiving a list of parameters like other events, these events receive argument objects.

TIP: PreviewTimeout Events only function when running a script on an Outbound Dialer Server. If
you are running a script on a Manual Calling Server, which by default doesn't support the preview
countdown timer feature, then the PreviewTimeout Events will not function. They can be present in
a script, they just won't function because on a Manual Calling Server an agent must manually initiate
a call by clicking a button.

Event Definition

IS_Event_PreviewTimeoutStarted This event is fired when the preview timer starts.

IS_Event_PreviewTimeoutStopped

This event is fired when the preview timer stops or is
canceled.

IS_Event_PreviewTimeoutExpired This event is fired when the preview timer expires.

Interaction Scripter Developer's Guide

155

IS_Event_PreviewTimeoutStarted

Definition

The IS_Event_PreviewTimeoutStarted event is a Predictive Event that is specifically designed for use
with Preview campaigns that use a preview countdown timer. When a countdown timer is enabled for a
Preview campaign, Dialer will send the IS_Event_PreviewTimeoutStarted event to a custom script when
the countdown timer starts.

The IS_Event_PreviewTimeoutStarted event will only function when running a script on an Outbound
Dialer Server. If you are running a script on a Manual Calling Server, which by default doesn't support
the preview countdown timer feature, then the IS_Event_PreviewTimeoutStarted event will not
function. The IS_Event_PreviewTimeoutStarted event can be present in a script, it just won't function
because on a manual calling server an agent must manually initiate a call by clicking a button.)

Attributes

The IS_Event_PreviewTimeoutStarted event has two attributes that are passed in as argument objects.

InteractionId

This is a string that holds the Id of the preview call for which the timeout has started.

Timeout

This is a DateObject that indicates when the timeout will expire.

Example

<head>

 <script language=javascript>

 function IS_Event_PreviewTimeoutStarted(args) {

 var id = args.InteractionId;

 var timeout = args.Timeout;

 // insert other code here as needed...

 }

 </script>

</head>

Interaction Scripter Developer's Guide

156

IS_Event_PreviewTimeoutStopped

Definition

The IS_Event_PreviewTimeoutStopped event is a Predictive Event that is specifically designed for use
with Preview campaigns that use a preview countdown timer. When a countdown timer is enabled for a
Preview campaign, Dialer will send the IS_Event_PreviewTimeoutStopped event to a custom script to
indicate that the countdown timer has stopped or has been canceled.

The IS_Event_PreviewTimeoutStopped event will only function when running a script on an Outbound
Dialer Server. If you are running a script on a Manual Calling Server, which by default doesn't support
the preview countdown timer feature, then the IS_Event_PreviewTimeoutStopped event will not
function. (The IS_Event_PreviewTimeoutStopped event can be present in a script, it just won't function
because on a Manual Calling Server an agent must manually initiate a call by clicking a button.)

Attributes

IS_Event_PreviewTimeoutStopped has one attribute that is passed in as an argument object.

InteractionId

This is a string that holds the ID of the preview call for which the timeout has stopped.

Example

<head>

 <script language=javascript>

 function IS_Event_PreviewTimeoutStopped(args) {

 var id = args.InteractionId;

 // insert other code here as needed...

 }

 </script>

</head>

Interaction Scripter Developer's Guide

157

IS_Event_PreviewTimeoutExpired

Definition

The IS_Event_PreviewTimeoutExpired event is a Predictive Event that is specifically designed for use
with Preview campaigns that use a preview countdown timer. When a countdown timer is enabled for a
Preview campaign, Dialer will send the IS_Event_PreviewTimeoutExpired event to a custom script to
indicate that the time on the countdown timer has expired.

An IS_Event_PreviewTimeoutExpired event will only function when running a script on an Outbound
Dialer Server. If you are running a script on a Manual Calling Server, which by default doesn't support
the preview countdown timer feature, then the IS_Event_PreviewTimeoutExpired event will not
function. The IS_Event_PreviewTimeoutExpired event can be present in a script, it just won't function
because on a Manual Calling Server an agent must manually initiate a call by clicking a button.

Attributes

The IS_Event_PreviewTimeoutExpired event has two attributes that are passed in as argument objects.

InteractionId

This is a string that holds the ID of the preview call for which the timeout has expired.

Cancel

This is a Boolean flag that can be used to cancel the automatic placement of the preview call.
Set it to true to cancel the automatic call.

Example

<head>

 <script language=javascript>

 var cancelPreview = false;

 function IS_Event_PreviewTimeoutExpired(args) {

 var id = args.InteractionId

 if (cancelPreview)

 args.Cancel = true;

 // insert other code here as needed...

 }

 </script>

</head>

Interaction Scripter Developer's Guide

158

Interaction Scripter Attributes

Interaction Scripter Attributes

Attributes are data items passed by actions to the CIC server. A Dialer attribute is data from a column in
a database that is associated with a campaign. Every Dialer database column is automatically associated
with a script object of the same name with IS_Attr_ prefixed. For example, the database column
"address" is available as script attribute "IS_ATTR_ADDRESS".

If the attribute is first declared in the script, it will go back to the Dialer server during a call complete
function, and it can be accessed from a handler. In the CIC environment, an attribute is a piece of
information about an object (such as a telephone call) that travels with the object. An example might be
the telephone number of the individual called during a campaign. The server passes attributes to the
client application when a new call event occurs. The client passes attributes to the server when a call-
complete action is performed.

• Predictive attributes are attributes that are normally used with either a Predictive, Preview or
Power dialing campaigns. These attributes are not to be used in blended environments, for
example in inbound pages loaded in scripter. The predictive base view for dialer is not loaded in
an inbound page, thus these attributes would not return any values.

• System Services attributes are supplemental predictive attributes that retrieve information
about a Dialer agent, such as the agent's name, or ID . You can also use system services to
change an agent's status.

• Custom attributes are also supported. Scripter provides the ability to create any attribute within
a custom script. These attributes can be references to the actual values in the call list or can be
a newly created attribute declared in a meta tag within the pages loaded in scripter.

Scripter attributes are normally data of some sort that is associated with a call that is on the user's
queue. These attributes normally consist of the data that came from the call list that the campaign was
dialing from. Custom attributes can be also created for added flexibility. These variables stay persistent
through out the life of the call while it is on the users queue. Because of this persistence, it is very good
practice at the time of disposition to clear out all relevant attributes to reduce the chance that stale data
might populate the newly arrived call. All basic scripter attributes are prefixed with IS_Attr_ . This prefix
tells Scripter that this is a attribute that is must retrieve or maintain data through out the session. A few
system attributes are read-only. Most read-only attributes start with IS_System_, but a few IS_Attr_
attributes are read only also.

Interaction Scripter Developer's Guide

159

Predictive Attributes

Predictive Attributes

A Dialer attribute is data from a column in a database that is associated with a campaign. Every Dialer
database column will automatically become associated with a script object of the same name with
IS_Attr_ prefixed. For example, the database column "address" is available as script attribute
"IS_ATTR_ADDRESS". If the attribute is first declared in the script, it will go back to the Dialer server
during a call complete function, and it can be accessed from a handler.

Predictive attributes are normally used with either a Predictive, Preview or Power dialing campaigns.
These attributes are not to be used in blended environments. For example, you cannot use predictive
attributes in inbound pages loaded into Scripter, since the predictive base view for Dialer is not loaded
in an inbound page, and consequently predictive attributes would not return any values.

Reserved Read-Only Attributes

Treat these attributes as read-only and never create a database column that conflicts with these names.
These parameters are available to the script, but a script should never modify their values.

Attribute Description

IS_Attr_Attempts

The number of times that the server has attempted to call the
targeted party.

IS_Attr_CallId The identifier of the current call.

IS_Attr_CampaignID Globally unique identifier (GUID) of the campaign object.

IS_Attr_CampaignGroup

If the Advanced Campaign Management feature is in use, this
attribute will contain the name of the active Campaign Group in a
Campaign Sequence. If a campaign is using rule groups as an
automation tool, this attribute will contain the name of the active
rule group.

IS_Attr_CampaignName The name of the current campaign object.

IS_Attr_ContactCampaignID Identifies which campaign the record came from.

IS_Attr_DialingMode The dialing mode for the current campaign.

IS_Attr_I3_RowID

Represents the row id of the record that is presented to the agent.
This row id is a unique value in the call list, and is usually the primary
key in the call list table.

IS_Attr_Schedphone Assigns the number of a call to schedule.

Interaction Scripter Developer's Guide

160

IS_Attr_Status

This read-only attribute contains the status of the current call
record.

IS_Attr_Zone The value of zone column in the call list

Interaction Scripter Developer's Guide

161

Tips for Using Global Variables

All sub attributes of IS_Attr elements are global. These variables persist while the client is running. It is a
good practice to clear global data at the beginning of each call. If more than one element is given the
same IS_ATTR_* name, unpredictable results will occur.

// create some attributes

IS_Attr_CallData.foo = "Hello";

IS_Attr_CallData.bar = "World";

Interaction Scripter Developer's Guide

162

IS_Attr_Attempts

Definition

This attribute contains the number of times that the server has attempted to call the targeted
party. Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Usage

Read Yes

Write No

Example

This example displays the attempts attribute in an edit field.

<body>

 <input name="IS_Attr_Attempts">

<body>

Interaction Scripter Developer's Guide

163

IS_Attr_CallId

Definition

This read-only attribute represents the CallID of the current call object that is on the users’
queue. Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Usage

Read Yes

Write No

Example

This example shows how to display the values of various attributes in a simple web page.

<html>

<head>

 <title>Data Pop</title>

</head>

<meta name=IS_System_ClientStatus>

<meta name="IS_Attr_CallID">

<meta name="IS_Attr_Zone">

<meta name="IS_Attr_DialingMode">

<meta name=’IS_Attr_Attempts">

<meta name="IS_Attr_CampaignName">

<meta name="IS_System_AgentID">

<script language="javascript">

 function InitliazePageValues() {

 tagAgentID.innerText = IS_System.AgentID.value;

 tagAgentStatus.innerText = IS_System_ClientStatus.value;

 tagCallID.innerText = IS_Attr_CallID.value;

 tagZone.innerText = IS_Attr_Zone.value;

 tagCampaignName.innerText = IS_Attr_CampaignName.value;

Interaction Scripter Developer's Guide

164

 switch (IS_Attr_DialingMode.value) {

 case 0:

 tagDialingMode.innerText = "Power / Predictive";

 break;

 case 1:

 tagDialingMode.innerText = "Preview Mode";

 break;

 case 2:

 tagDialingMode.innerText = "Place Preview";

 break;

 case 3:

 tagDialingMode.innerText = "Own Agent Callback";

 break;

 case 4:

 tagDialingMode.innerText = "Own Agent Callback Preview";

 break;

 case 5:

 tagDialingMode.innerText = "Own Agent Callback Place
Preview";

 break;

 case 7:

 tagDialingMode.innerText = "Agentless";

 break;

 case 8:

 tagDialingMode.innerText = "Precise Dial";

 break;

 }

 }

</script>

<body>

 <em id="tagAgentID">[Agent ID]

 <em id="tagAgentStatus">[Agent Status]

Interaction Scripter Developer's Guide

165

 <em id="tagCallID">[Call ID]

 <em id="tagZone">[ZONE]

 <em id="tagDialingMode">[Dialing Mode]

 <em id="tagCampaignName">[Campaign Name]

</body>

</html>

Interaction Scripter Developer's Guide

166

IS_Attr_CampaignID

Definition

This read-only attribute contains the id of the currently running campaign. Scripter will recognize click
events from any HTML element whose name has an associated action documented in this API (e.g.:
"IS_Action_CallComplete"). If the script needs to associate several buttons with the same action, then
define the action using a meta element and call the click event on the meta element from buttons.

Usage

Read Yes

Write No

Example

This is an example of a campaign edit field.

<head>

 <meta name=IS_Attr_CampaignID>

 <script language="javascript">

 window.onload = InitTagValues;

 function InitTagValues() {

 tagCampaignName.innerText = IS_Attr_CampaignID.value;

 }

 </script>

</head>

<body>

 <p>The ID of this campaign is: <em id="tagCampaignId">[Campaign
Id]</p>

</body>

Interaction Scripter Developer's Guide

167

IS_Attr_CampaignName

Definition

Returns the name of the campaign object.

Usage

Read Yes

Write No

Example

This example shows how to display the values of various attributes in a simple web page.

<html>

<head>

 <title>Data Pop</title>

</head>

<meta name=IS_System_ClientStatus>

<meta name="IS_Attr_CallID">

<meta name="IS_Attr_Zone">

<meta name="IS_Attr_DialingMode">

<meta name="IS_Attr_Attempts">

<meta name="IS_Attr_CampaignName">

<meta name="IS_System_AgentID">

<script language="javascript">

 function InitliazePageValues() {

 tagAgentID.innerText = IS_System.AgentID.value;

 tagAgentStatus.innerText = IS_System_ClientStatus.value;

 tagCallID.innerText = IS_Attr_CallID.value;

 tagZone.innerText = IS_Attr_Zone.value;

 tagCampaignName.innerText = IS_Attr_CampaignName.value;

Interaction Scripter Developer's Guide

168

 switch (IS_Attr_DialingMode.value) {

 case 0:

 tagDialingMode.innerText = "Power/Predictive";

 break;

 case 1:

 tagDialingMode.innerText = "Preview Mode";

 break;

 case 2:

 tagDialingMode.innerText = "Place Preview";

 break;

 case 3:

 tagDialingMode.innerText = "Own Agent Callback";

 break;

 case 4:

 tagDialingMode.innerText = "Own Agent Callback Preview";

 break;

 case 5:

 tagDialingMode.innerText = "Own Agent Callback Place
Preview";

 break;

 case 7:

 tagDialingMode.innerText = "Agentless";

 break;

 case 8:

 tagDialingMode.innerText = "Precise Dial";

 break;

 }

 }

</script>

<body>

 <em id="tagAgentID">[Agent ID]

 <em id="tagAgentStatus">[Agent Status]

Interaction Scripter Developer's Guide

169

 <em id="tagCallID">[Call ID]

 <em id="tagZone">[ZONE]

 <em id="tagDialingMode">[Dialing Mode]

 <em id="tagCampaignName">[Campaign Name]

</body>

</html>

Interaction Scripter Developer's Guide

170

IS_Attr_CampaignGroup

Definition

If a campaign is using rule groups as an automation tool, this attribute contains the name of the active
rule group in the campaign that is currently running. If the Advanced Campaign Management feature is
in use, this attribute contains the name of the active Campaign Group in the Campaign Sequence that is
currently running.

Usage

Read Yes

Write No

Example

<html>

<head>

 <title>Standard Campaign Form</title>

 <meta name="IS_Attr_CampaignGroup" />

 <script language="javascript">

 window.onload = InitTagValues;

 function InitTagValues() {

 tagCampaignGroup.innerText = IS_Attr_CampaignGroup.value;

 }

 </script>

</head>

<body>

 <p>The Active Group is of this campaign is: <em
id="tagCampaignGroup">[Group]

</body>

</html>

Interaction Scripter Developer's Guide

171

IS_Attr_ContactCampaignID

Definition

This attribute is deprecated but will still be populated with the ID of the campaign associated with the
current Dialer call.

Usage

Read Yes

Write No

Interaction Scripter Developer's Guide

172

IS_Attr_DialinsgMode

Definition

This read-only attribute returns the dialing mode for the current campaign. It represents the dialing
mode of the Interaction Dialer call that is presented to the agent. The possible values are:

0 Power/Predictive mode

1 Preview mode

2 Place Preview

3 Own Agent Callback

4 Own Agent Callback Preview

5 Own Agent Callback Place Preview

7 Agentless

8 Precise

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from the button(s).

Usage

Read Yes

Write No

Example

This is an example of a dialing mode edit field.

<head>

<script language="javascript">

window.onload = InitTagValues;

function InitTagValues() {

 tagDialingMode.innerText = IS_Attr_DialingMode.value;

}

</script>

Interaction Scripter Developer's Guide

173

</head>
<body>

 <p>The current dialing mode is: <em id="tagDialingMode">[Dialing
Mode]</p>

</body>

Interaction Scripter Developer's Guide

174

IS_Attr_I3_RowID

Definition

This read-only attribute represents the row id of the record that is presented to the agent. This row id is
a unique value in the call list, and is usually the primary key in the call list table. Scripter will recognize
click events from any HTML element whose name has an associated action documented in this API (e.g.:
"IS_Action_CallComplete"). If the script needs to associate several buttons with the same action, then
define the action using a meta element and call the click event on the meta element from the button(s).

Usage

Read Yes

Write No

Example

<head>

 <script language="javascript">

 window.onload = InitTagValues;

 function InitTagValues() {

 tagRowID.innerText = IS_Attr_RowID.value;

 }

 </script>

</head>

<body>

 <p>The RowID attribute is: <em id="tagRowID">[RowID]</p>

</body>

Interaction Scripter Developer's Guide

175

IS_Attr_Schedphone

Definition

This attribute can be assigned the telephone number of a call to schedule. When implemented in a
script, add a meta tag (or other named element) called 'is_attr_schedphone' whose value will be
assigned the scheduled phonenumber. When this attribute is present in the script, you must ensure that
it gets initialized to "" for every data pop.

Example

<head>

 <meta name="IS_attr_schedphone">

 <meta name="IS_Action_CallComplete">

 <script language="javascript">

 function doSchedule() {

 IS_attr_schedphone.value = "555-1448"

 IS_Action_CallComplete.wrapupcode = "Scheduled";

 IS_Action_CallComplete.agentid = "Dev_PD_User1";

 IS_Action_CallComplete.click();

 }

 </script>

</head>

Interaction Scripter Developer's Guide

176

IS_Attr_Status

Definition

This read-only attribute contains the status of the current call record. The status column in the Contact
List indicates the overall status of a contact, not the callable status of individual numbers, which is
maintained in the Phone Number Detail table. This approach allows a DNC status to be maintained in
the PND table for individual telephone numbers associated with a contact. Scripter agents typically see
only S, R, or C. The possible values are:

A
The maximum retry attempts for busy, answering machine, no answer etc. have been
reached for the record. It will never be called again.

C A callable record.

D

"D" is assigned to deleted contacts who have asked to have their numbers removed from
the Contact List. This indicator is not used with scheduled calls. A "D" can only come from
an agent disposition, wherein the callee has been asked to be removed from the Contact
List.

E The contact is excluded from being dialed.

F

A record "flagged" for customer review because all of a contact's numbers are uncallable.
For example, if all attempts to dial phone numbers for a contact fail with SIT wrap-up
codes, then that contact is essentially uncallable until a new contact column is added or
some of the existing numbers are changed. Rather than mark the contact as uncallable, it
is flagged with "F" so that customers can change the status back to "C" after they have
added a new contact column, or updated contact numbers.

I

"I" stands for In Process. The record selection process has selected this record for
processing, and the record has been passed to an Outbound Dialer server. However, the
record may not have been dialed yet, and it has not been dispositioned by an agent.

When a campaign stops, its active contacts are reset in the ContactList (status changed
from 'I' to 'C'), and the active campaign ID (i3_activecampaignid) is used by a stored
procedure to ensure that only contacts associated with this campaign are cleared.

O
"O" stands for auto-scheduled call. When the system schedules a call back according to
the defined auto-schedule settings, Status is set to O to indicate that a callback has been
scheduled, but has not been attempted yet.

R

A record that was rescheduled because the designated agent was not logged in to take
the call. If these are campaign wide calls, then if no agents are logged in, calls will be
rescheduled with "R" in the status field. If 'ignore recycles' is checked, auto scheduled
calls will be distinguished from agent scheduled campaign wide calls and own agent
callbacks.

Interaction Scripter Developer's Guide

177

S
A scheduled call. When an agent schedules a call back, Status is set to S to indicate that a
callback has been scheduled, but has not been attempted yet.

T

An auto-rescheduled call, meaning that the scheduled call was rescheduled by dialer, but
not an agent. This status is assigned to a scheduled callback that failed to reach a contact,
and the maximum number of callback attempts has not been reached. When it is, the
status will be changed to "D". The call list status will appear as 'C' for auto-scheduled and
rescheduled auto-scheduled calls if ignore recycles is not checked.

U Unusable call record. This status flag designates that the contact will not be called again.

Usage

Read Yes

Write No

Example

<head>

 <script language="javascript">

 window.onload = InitTagValues;

 function InitTagValues() {

 tagStatus.innerText = IS_Attr_Status.value;

 }

 </script>

</head>

<body>

 <p>The call record status is: <em id="tagStatus">[Status]</p>

</body>

Interaction Scripter Developer's Guide

178

IS_Attr_Zone

Definition

This must match a value in the ZoneSet associated with the campaign. Scripter will recognize click events
from any HTML element whose name has an associated action documented in this API (e.g.:
"IS_Action_CallComplete"). If the script needs to associate several buttons with the same action, then
define the action using a meta element and call the click event on the meta element from buttons.

Usage

Read Yes

Write No

Example

This is an example of a time zone edit field.

<body>

 <input name="IS_Attr_Zone">

</body>

Interaction Scripter Developer's Guide

179

System Services Attributes

System Services Attributes

System Service elements retrieve information about an agent, such as the agent's name, ID, or client
status. System Services attributes are read-only.

Attribute Description

IS_System_AgentID Returns the User ID of the agent.

IS_System_AgentName Returns the Exchange display name of the agent.

IS_System_ClientStatus

Returns the current availability of the client (Available, Out to Lunch,
etc.), and the available status messages defined on the server.

Interaction Scripter Developer's Guide

180

IS_System_AgentID

Definition

IS_System_AgentID returns the ID of an agent. See also IS_System_AgentName, which returns the name
of the agent. Scripter will recognize click events from any HTML element whose name has an associated
action documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several
buttons with the same action, then define the action using a meta element and call the click event on
the meta element from buttons.

Example

<head>

 <meta name="IS_Action_CallComplete">

 <meta name="IS_System_AgentID">

 <script language=javascript>

 function OwnAgentCallback(callBackTime) {

 IS_Action_CallComplete.agentID = IS_System_AgentID.value;

 IS_Action_CallComplete.callBackTime = callBackTime;

 IS_Action_CallComplete.click();

 }

 </script>

</head>

<body>

 Callback Time <input id=CallbackTime> (mm/dd/yyyy hh:mm)

 <input type=button value="Call Back"
onclick='OwnAgentCallback(CallbackTime.value)'>

</body>

Interaction Scripter Developer's Guide

181

IS_System_AgentName

Definition

IS_System_AgentName returns the name of the agent. See also IS_System_AgentID, which return the ID
of an agent. Scripter will recognize click events from any HTML element whose name has an associated
action documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several
buttons with the same action, then define the action using a meta element and call the click event on
the meta element from buttons.

Example

In the example below, IS_Attr_Name must be a column returned from a database.

<body>

 <p>Hello, this is <em name="IS_System_AgentName">.</p>

 <p>May I please speak with Mr./Mrs. <em name="IS_Attr_Name">?</p>

</body>

Interaction Scripter Developer's Guide

182

IS_System_ClientStatus

Definition

IS_System_ClientStatus.list retrieves an array of status messages from the CIC Server. Status messages
are defined in Interaction Administrator under System Configuration | Status Messages. The default
status messages are:

• ACD – Agent Not Answering
• At a Training Session
• At Lunch
• Available
• Available, No ACD
• On Vacation
• Available, Remote
• Do Not Disturb
• Follow Up
• Gone Home
• In a Meeting
• Out of the Office
• Out of Town

In a default system configuration, IS_System_ClientStatus.list returns the following array elements:

• IS_System_ClientStatus.list[0] = ACD – Agent Not Answering
• IS_System_ClientStatus.list[1] = At a Training Session
• IS_System_ClientStatus.list[2] = At Lunch
• IS_System_ClientStatus.list[3] = Available
• IS_System_ClientStatus.list[4] = Available, No ACD
• IS_System_ClientStatus.list[5] = Available, Remote
• IS_System_ClientStatus.list[6] = Do Not Disturb
• IS_System_ClientStatus.list[7] = Follow Up
• IS_System_ClientStatus.list[8] = Gone Home
• IS_System_ClientStatus.list[9] = In a Meeting
• IS_System_ClientStatus.list[10] = On Vacation
• IS_System_ClientStatus.list[11] = Out of the Office
• IS_System_ClientStatus.list[12] = Out of Town

IS_System_ClientStatus.list.length returns the total number of status messages returned. In a default
server configuration, IS_System_ClientStatus.list.length would return 13. Note that the array is zero-
based.

IS_SYSTEM_ClientStatus.value allows you to retrieve the agent's status. For example,
alert(IS_System_ClientStatus.value);.

Scripter will recognize click events from any HTML element whose name has an associated action
documented in this API (e.g.: "IS_Action_CallComplete"). If the script needs to associate several buttons
with the same action, then define the action using a meta element and call the click event on the meta
element from buttons.

Interaction Scripter Developer's Guide

183

Starting with version Interaction Scripter 3.0 Service Update 7, IS_System_ClientStatus.list now
returns only accessible statuses. In earlier versions of Scripter it returned all statuses defined on the
system. Access to statuses can be restricted by User or Workgroup, so Scripter now returns only
those statuses that are available to the user.

Example

<html>

<head>

 <meta name="IS_Action_ClientStatus">

 <meta name="IS_System_ClientStatus">

 <script language=javascript>

 window.onload = Init;

 function Init() {

 if (!IS_System_ClientStatus.list)

 return;

 var availableStatuses = IS_System_ClientStatus.list;

 for (i = 0; i < availableStatuses.length; i++) {

 // populate with all valid statuses

 StatusList.add(new Option(availableStatuses[i]));

 // select if it is the current status

 if (availableStatuses[i] == IS_System_ClientStatus.value) {

 StatusList.selectedIndex = i;

 }

 }

 }

 function StatusChange() {

 // set the status attribute to the text of currently displayed
item

 IS_Action_ClientStatus.statusId =
StatusList.item(StatusList.selectedIndex).text;

 IS_Action_ClientStatus.click();

 }

 </script>

</head>

<body>

Interaction Scripter Developer's Guide

184

 <select id="StatusList" onchange="StatusChange();"></select>

</body>

</html>

Interaction Scripter Developer's Guide

185

Custom Scripter Attributes

Scripter can create custom attributes within a custom script. These attributes can be references to the
actual values in the call list or can be a newly created attribute declared in a meta tag within the pages
loaded in Scripter.

For example, suppose that the call list has a column called EmployeeSalary that stores employee salary
totals. When the page is popped to the agent, you want to take the salary and calculate the raise based
on the percentage stored in the column RaisePercentage. The newly calculated salary is to be stored in
a newly created attribute within the page, but not persisted to the database. The example below
demonstrates how this can be achieved.

Example

<html>

<head>

 <title>New Salary Page</title>

</head>

<meta name="IS_Attr_EmployeeSalary">

<meta name="IS_Attr_RaisePercentage">

<meta name="IS_Attr_NewSalary">

<script language="javascript">

 function CalculateRaise() {

 IS_Attr_NewSalary.value = ((IS_Attr_RaisePercentage.value / 100) *
IS_Attr_EmployeeSalary.value) + IS_Attr_EmployeeSalary.value;

 tagOriginalSalary.innerText = IS_Attr_EmployeeSalary.value;

 tagRaisePerc.innerText = IS_Attr_RaisePercentage.value;

 tagNewSalary.innerText = IS_Attr_NewSalary.value;

 }

</script>

<body>

 <em id="tagOriginalSalary">[Original Salary]

Interaction Scripter Developer's Guide

186

 <em id="tagRaisePerc">[Raise Percentage]

 <em id="tagNewSalary">[New Salary]

</body>

</html>

Interaction Scripter Developer's Guide

187

Interaction Scripter Behaviors

Interaction Scripter Behaviors

Behaviors are like command line parameters and are used to change the way that Scripter behaves
when running custom scripts. This means that the behaviors are limited to the custom scripts that
implement them rather than applying globally.

• Predictive Behaviors are only applicable for custom scripts associated with a Predictive, Power
or Preview campaign.

Interaction Scripter Developer's Guide

188

Predictive Behaviors

Predictive Behaviors

Interaction Scripter Predictive behaviors are only applicable for custom scripts associated with a
Predictive, Power or Preview campaign.

Behavior Definition

IS_Bhvr_SuppressToast

When added to a custom script, this behavior will suppress the toast pops
that appear on the screen when a user is logged into or out of a campaign
automatically by a rule or manually by an administrator. When this
behavior is added to the head section of a custom script, it will prevent
toast pops for any campaign that is using the custom script while allowing
other campaigns using base scripts or other custom scripts to continue to
display the log in and log off toast pops.

Interaction Scripter Developer's Guide

189

IS_Bhvr_SuppressToast

Definition

When added to a custom script, this behavior will suppress the toast pops that appear on the screen
when a user is logged into or out of a campaign automatically by a rule or manually by an administrator.
When this behavior is added to the head section of a custom script, it will prevent toast pops for any
campaign that is using the custom script while allowing other campaigns using base scripts or other
custom scripts to continue to display the log in and log off toast pops.

Attributes

 None.

Example

<head>

 <meta name="IS_Bhvr_SuppressToast" />

</head>

Interaction Scripter Developer's Guide

190

scripter object

scripter object

The scripter object adds call, chat, conference, queue, and user objects whose methods and properties
are useful in blended call center environments:

• The CallObject class implements methods that interact with call objects. Methods supported by
CallObject can dial, transfer, pickup, listen to, record, pause, or pick up calls. This makes it easy
to query or set the properties of call objects, such as the CallID, or StateString.

• The campaign object encapsulates the Name, ID and Status of a Dialer campaign.

• The ChatObject class manipulates chat objects. Chat objects are very similar to call objects. The
source examples for call objects can be adapted for chat objects. The methods and properties
supported by scripter.chatObject are listed below. Click on a link for information concerning
input parameters and return values.

• The ConferenceObject class manages conference calls. It allows you to begin a conference call,
add calls to the conference, and disconnect parties from the conference. Properties of the
ConferenceObject provide notification, handling, and the ability to enumerate objects in the
conference.

• The Queue object connects to queues, and provides access to properties supported by queue
objects. An additional queue object, scripter.myQueue is functionally equivalent to the Queue
class, except that the current user's queue is preattached to the object. (scripter.queue can
connect to any queue).

• The User object obtains information about a specific CIC user, such as a list of user, station, line,
and workgroup queues that the user can view and modify, the user's status, logged in state, etc.

• The dialer object encapsulates properties of the agent's session with Dialer and properties such
as which campaigns the agent is active in.

Methods

scripter.createCallObject Creates a new CallObject.

scripter.createChatObject Creates a new ChatObject.

scripter.createConferenceObject Creates a new ConferenceObject.

scripter.createQueue Creates a new Queue object.

scripter.createUser Creates a new User object.

scripter.trace Generates a trace log entry to aid in script debugging.

Interaction Scripter Developer's Guide

191

Properties

scripter.breakStatus

Returns the agent's break status (On Break, Break Pending, Not on
Break).

scripter.callObject

Provides access to a static CallObject. It returns the current active
call.

scripter.chatObject

Provides access to a static ChatObject. It returns the currently active
chat object.

scripter.conferenceObject Provides access to a static ConferenceObject.

scripter.myQueue

Provides access to a static Queue object preconnected to the logged-
in agent's queue.

scripter.myUser

Provides access to a static User object referring to the logged-in
agent.

scripter.notifierName Returns the server name of the notifier the agent is connected to.

scripter.queue Provides access to a static Queue object.

scripter.user Provides access to a static User object.

scripter.dialer

This dialer object encapsulates properties of the agent's session with
Dialer and properties such as which campaigns the agent is active in.

Example

The code snippet below demonstrates how scripter queue and call objects work together.

scripter.myQueue.objectAddedHandler = ObjectAdded;

function ObjectAdded(ObjType, ObjId) {

 // we only want call objects (type 2)

 if (ObjType == 2) {

 scripter.callObject.id = ObjId;

 var campaign =
scripter.callObject.getAttribute("IS_Attr_CampaignID");

 if ((campaign < > "") {

Interaction Scripter Developer's Guide

192

 // move this page to the top

 IS_Action_SelectPage.click();

 // stop listening for object added notifications

 scripter.myQueue.objectAddedHandler = null;

 // pop the data

 location.href = "pop.htm";

 } else {

 // we are not interested in this call

 scripter.callObject.id = -1;

 }

 }

 }

Interaction Scripter Developer's Guide

193

scripter.createCallObject Method

Definition

This method creates a new CallObject. You must first create a call object before dialing a number, or
setting up a consult transfer, or conference.

Prototype

scripter.createCallObject([out,retval] CallObject)

Syntax

myObj=scripter.createCallObject();

Input Parameters

None.

Return Values
CallObject

The new CallObject that was created.

Example

<html>

<head>

 <title>Scripter Object</title>

 <script type="text/JavaScript">

 function MakeCall() { var CallObject = scripter.createCallObject();
CallObject.Dial(Phonenumber.value, false); }

 </script>

</head>

<body>

 <table>

 <tr>

 <td><input type=button onclick="MakeCall();" value="Dial"></td>

 <td>Phone Number<input name="Phonenumber" id="Phonenumber"></td>

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

194

scripter.createChatObject Method

Definition

This method creates a new ChatObject. Use this method to keep track of multiple inbound chats. The
Scripter chat object does not allow placing of outbound chats.

Syntax

var objChat = scripter.createChatObject();

Prototype

scripter.createChatObject([out,retval] ChatObject)

Input Parameters

None.

Return Values
ChatObject

The new ChatObject that was created.

Interaction Scripter Developer's Guide

195

scripter.createConferenceObject Method

Definition

This method creates a new ConferenceObject. Once this object is created, you must call the Add
method with Call Ids to add specific calls to the conference.

Syntax

var objConf = scripter.createConferenceObject();

Prototype

scripter.createConferenceObject([out,retval] ConferenceObject);

Input Parameters

None.

Return Values
ConferenceObject

The new ConferenceObject that was created.

Example

<html>

<head>

 <script language="javascript">

 function TestConference() {

 // Create the callobject

 var CallObj2 = scripter.createCallObject();

 // assign the id of the object to the current Campaign Call
object

 CallObj2.id = IS_ATTR_CallID.value;

 // Create the call object to dial out

 var CallObj1 = scripter.createCallObject()

 // Dial third party number

Interaction Scripter Developer's Guide

196

 CallObj1.Dial("5551212", false);

 var doConnect = window.confirm("Add party to conference?");

 if (!doConnect) {

 // do not add the party to the conference

 CallObj1.Disconnect();

 // pick up scripter call

 CallObj2.PickUp();

 return;

 }

 // create conference object

 var ConfObj = scripter.createConferenceObject();

 // once call is added, conference object is valid

 CallObj1.pickup();

 ConfObj.Create(CallObj1);

 // add second call object

 CallObj2.pickup();

 ConfObj.add(CallObj2);

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td><input type=button onclick="Conference();"
value="Conference"></input></td>

 <td>Phone 1</td>

 <td><input name="Phone1" id="Phone1"></input></td>

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

197

scripter.createQueue Method

Definition

This method creates a new Queue object.

Syntax

var objQueue = scripter.createQueue();

Prototype

scripter.createQueue([out,retval] Queue)

Input Parameters

None.

Return Values
Queue

The new Queue object that was created.

Interaction Scripter Developer's Guide

198

scripter.createUser Method

Definition

This method creates a new User Object.

Syntax

var objUser = scripter.createUser();

Prototype

scripter.createUser([out,retval] User)

Input Parameters

None.

Return Values
User

The new User Object that was created.

Interaction Scripter Developer's Guide

199

scripter.trace Method

Definition

This method works like IS_Action_Trace, by generating an entry to the trace log to aid in script
debugging.

Syntax

scripter.trace(message, level);

Prototype

scripter.trace([in] String message, [in, optional] Long level)

Input Parameters
Message

Message is the trace message and is a string.

Level

Level is the tracing level and must be one of the following:

0 Error

1 Warning

2 Status

3 Note

If level is invalid or missing, "Status" is used instead.

Return Values

None.

Interaction Scripter Developer's Guide

200

scripter.breakStatus Property

Definition

This property returns the agent's break status (On Break, Break Pending, Not on Break).

Syntax

scripter.breakStatus

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

breakStatus

NotOnBreak 0

BreakPending 1

OnBreak 2

Interaction Scripter Developer's Guide

201

scripter.callObject Property

Definition

This property provides access to a static CallObject. See the scripter.createConferenceObject method for
sample code. Although scripter.callObject provides access to a callObject, it isn't necessarily the active
callObject. Developers must set the CallID property.

Syntax

scripter.callObject

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned
CallObject

Returns the same instance of the CallObject each time.

Interaction Scripter Developer's Guide

202

scripter.chatObject Property

Definition

This convenience property provides access to a static ChatObject. Although scripter.chatObject provides
access to a chatObject, it isn't necessarily the active chatObject. Use the chatObject.id property to
determine if it is a valid chat.

Syntax

scripter.chatObject

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned
ChatObject

Returns the same instance of the ChatObject each time.

Interaction Scripter Developer's Guide

203

scripter.conferenceObject Property

Definition

This property provides access to a static ConferenceObject. Use the scripter.conferenceObject.id
property to determine if a conference exists. A user can generate only one conference Id at a time. See
scripter.createConferenceObject method for sample code.

Syntax

scripter.conferenceObject

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned
ConferenceObject

Returns the same instance of the ConferenceObject each time.

Interaction Scripter Developer's Guide

204

scripter.myQueue Property

Definition

This property provides access to a static Queue object preconnected to the logged-in agent's queue.

Syntax

scripter.myQueue

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned
Queue

Returns the same instance of the Queue object each time.

Interaction Scripter Developer's Guide

205

scripter.myUser Property

Definition

This property provides access to a static User object referring to the logged-in agent.

Syntax

scripter.myUser

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned
User

Returns the same instance of the User object each time.

Interaction Scripter Developer's Guide

206

Scripter.notifierName Property

Definition

This property returns the machine name of the server that the agent is currently logged into.

Syntax

scripter.notifierName

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned
notifierName

The name of the Notifier the agent is connected to.

Interaction Scripter Developer's Guide

207

scripter.queue Property

Definition

This property provides access to a static Queue object. This object remains the same throughout all
scripts and pages. The name and type must be set to retrieve other properties.

Syntax

scripter.queue

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned
Queue

Returns the same instance of the Queue object each time.

Interaction Scripter Developer's Guide

208

scripter.user Property

Definition

This property provides access to a static User object. You must first set the Id to retrieve other
properties of this object.

Syntax

scripter.user

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned
User

Returns the same instance of the User object each time.

Interaction Scripter Developer's Guide

209

CallObject

CallObject

CallObject manipulates call objects (telephone calls). This object supports standard telephony
operations, such as placing, muting, recording, or disconnecting a call. In addition, the CallObject
supports specialized operations normally performed by the CIC client. For example, CallObject methods
can be used to make a call private, or send a call to voice mail. The methods and properties supported
by the CallObject are listed below. Click on a link for information concerning input parameters and
return values.

Methods

CallObject.blindTransfer

Performs a blind transfer to the specified telephone number.
Use a blind transfer if you do not need to speak with the
recipient before transferring a call. If the intended recipient does
not answer, the call is sent to the recipient's voice mail.

CallObject.consultTransfer

Performs a consult transfer. Use a consult transfer if you need to
speak with the recipient before transferring the call. If the
intended recipient does not answer the phone, you can resume
your conversation with the caller, transfer the call to the
intended recipient's voice mail, or transfer the call to another
person.

CallObject.currentDialerCallId

Returns the Id of the current active dialer interaction. This can
be used to set a CallObject's id to initialize it with the current
active dialer call.

CallObject.dial

Dials a phone number. If you want to catch errors, use a Handler
or Object Watcher to receive error codes. Using Dial is the same
as calling ExtendedDial with TimeoutSecs=15 and no call
analysis.

CallObject.disconnect Disconnects the current call.

CallObject.extendedDial

Dials a number, allows for call analysis, and optionally forces a
timeout within a specified timeout period.

CallObject.getAttribute Retrieves the value of the specified call object attribute.

CallObject.hold Places a call on hold.

CallObject.listen Allows a CIC user to listen in on a call.

Interaction Scripter Developer's Guide

210

CallObject.mute

Mutes a call so the remote party cannot hear what the local
(CIC) party is saying.

CallObject.pause Pauses recording of the current call.

CallObject.pickup Picks up (answers) a call.

CallObject.playDigits

Plays DTMF tones for the string of digits provided as an input
parameter.

CallObject.private

Makes a call private so it cannot be listened to or recorded by
another CIC user.

CallObject.record Records a call.

CallObject.setAttribute Sets the value of the specified call object attribute.

CallObject.voicemail Sends a call to the current user's voice mail.

CallObject.pauseSecureRecord

Can be used to avoid recording sensitive information, such as a
Social Security number or credit card number, when connected
to a call interaction.

CallObject.resumeSecureRecord

Resumes recording that was paused by invoking the
CallObject.pauseSecureRecord method.

Callbacks

CallObject.errorHandler

Is invoked by when an internal error occurs in the call
object. If you pass the name of a user-defined function to
CallObject.errorHandler, the function will be called when
this event occurs. This callback is compatible with scripts
for Scripter .NET Client or Interaction Connect.

CallObject.stateChangeHandler
Is invoked whenever the call state changes. This callback is
compatible with scripts for Scripter .NET Client or
Interaction Connect.

CallObject.callObjectInitializedHandler

Allows a script to dial a number after waiting
asynchronously for a call object to be created. Use this
callback only in scripts for Interaction Connect.

Properties

Interaction Scripter Developer's Guide

211

CallObject.conferenceId

Returns a conference object ID if the call is included in a conference
call.

CallObject.creationTime Returns the date and time that the call object was created.

CallObject.direction Indicates the direction of the call (e.g. inbound, outbound, etc.).

CallObject.id Returns or sets the unique identifier of a call object.

CallObject.isHeld Indicates whether or not a call is on hold.

CallObject.isMonitored Indicates whether or not a call is being listened to.

CallObject.isMuted Indicates whether or not a call is muted.

CallObject.isParty Indicates whether the call is included in a conference call.

CallObject.isPaused Indicates whether recording of a call has been paused.

CallObject.isPrivate

Indicates whether is in a private state, meaning that no one can
listen in on (monitor) the call.

CallObject.isRecording Indicates whether a call is being recorded.

CallObject.lastError

Retrieves the text of the last error that occurred in the CallObject.
Each time a method or property is called on the CallObject, this value
is cleared.

CallObject.lastErrorId

Retrieves the id of the last error that occurred in the CallObject. Each
time a method or property is called on the CallObject, this value is
cleared.

CallObject.localId Returns the Station Id associated with the call.

CallObject.localLocation

Returns the phone extension of the station participating in an
inbound or outbound call.

CallObject.localName Returns the name of the logged in user.

CallObject.remoteId

Returns the formatted telephone number of the person outside CIC
who is making or receiving a call.

Interaction Scripter Developer's Guide

212

CallObject.remoteLocation

Returns the unformatted telephone number of the person outside
CIC who is making or receiving a call.

CallObject.remoteName Returns or sets the name of the caller.

CallObject.state

Returns the integer value corresponding to the call state of the call
object.

CallObject.stateString Retrieves or sets the string value that is displayed as call state
information in the CIC client.

Interaction Scripter Developer's Guide

213

CallObject.blindTransfer Method

Definition

This method performs a blind transfer to the specified telephone number. Use a blind transfer if you do
not need to speak with the recipient before transferring a call. If the intended recipient does not
answer, the call is sent to the recipient's voice mail.

Syntax

CallObject.blindTransfer(ToNumber);

Prototype

CallObject.blindTransfer(

[in] String ToNumber

)

Input Parameters

ToNumber

Telephone number of the transfer destination.

Return Values

None.

Example

<head>

 <script language="javascript">

 function blindTransfer() {

 CallObj = scripter.callObject;

 CallObj.blindTransfer(Phone1.value);

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td><input type=button value="B. Transfer"
onclick="blindTransfer();"></input>

 </td>

 <td>Number</td>

Interaction Scripter Developer's Guide

214

 <td><input name="Phone1" id="Phone1"></input>

 </td>

 </tr>

 </table>

</body>

Interaction Scripter Developer's Guide

215

CallObject.callObjectInitializedHandler Callback

Definition

This callback allows a script to dial a number after waiting asynchronously for a call object to be created.

Compatibility

Use this callback only in scripts for Interaction Connect.

Example

function main()

{

 var callObject = scripter.createCallObject();

 callObject.callObjectInitializedHandler = uponCallObjectInitialization;

 callObject.dial('3174566324');

}

function uponCallObjectInitialization(callObject)

{

 console.log('printing the call direction ' + callObject.direction);

}

Interaction Scripter Developer's Guide

216

CallObject.consultTransfer Method

Definition

Use this method to perform a consult transfer if you need to speak with the recipient before transferring
the call. If the intended recipient does not answer the phone, you can resume your conversation with
the caller, transfer the call to the intended recipient's voice mail, or transfer the call to another person.

Syntax

CallObject.consultTransfer(pVal)

Prototype

CallObject.consultTransfer(

 [in] String WithCallID

)

Input Parameters

WithCallID

The Call ID to transfer this call to.

Return Values

None.

Example

//* @param remoteNumber is the number to dial for the third party

function ConsultTransfer() {

 // call the remote number

 var CallObject2 = scripter.CreateCallObject();

 scripter.callObject.id = IS_Attr_CallId.value;

 CallObject2.dial(RemoteNumber, false);

 var doConnect = window.confirm("Transfer call?");

 if (doConnect) //the agent selected "OK" in the confirmation box

 {

 // make the transfer

 scripter.callObject.consultTransfer(CallObject2.id);

 scripter.callObject.id = -1; //release the callObject

 location.href = "inboundindex.htm";

 }

}

Interaction Scripter Developer's Guide

217

CallObject.currentDialerCallId Method

Definition

Returns the Id of the current active dialer interaction. This can be used to set a CallObject's id to
initialize it with the current active dialer call.

Example

function makeCurrentCallObject()

{ currentCallObject = scripter.createCallObject();
currentCallObject.callObjectInitializedHandler = scripterCallInitialized;
currentCallObject.id = currentCallObject.currentDialerCallId(); }

Value Returned

Interaction id

The id of the current interaction, in string form.

Interaction Scripter Developer's Guide

218

CallObject.dial Method

Definition

This method dials a phone number. If you want to catch errors, use a Handler or Object Watcher to
receive error codes. Using Dial is the same as calling ExtendedDial with TimeoutSecs=15 and no call
analysis. After calling a CallObject's Dial function, the objectSpecificChangeHandler will be called to give
an event code describing the outcome of the dial operation.

Syntax

CallObject.dial(Number, CallHandlerOnSuccess);

Prototype

CallObject.dial(

 [in] String Number,

 [in] Boolean CallHandlerOnSuccess

)

Input Parameters

Number

The telephone number to call.

CallHandlerOnSuccess

A Boolean value. Set True to call the event handler when the call is connected.

Return Values

None.

Example

See the scripter.createConferenceObject method for sample code.

Interaction Scripter Developer's Guide

219

CallObject.disconnect Method

Definition

This method disconnects the current call.

Syntax

CallObject.disconnect();

Prototype

CallObject.disconnect()

Input Parameters

None.

Return Values

None.

Example

See the scripter.createConferenceObject method for sample code.

Interaction Scripter Developer's Guide

220

CallObject.extendedDial Method

Definition

This method dials a number, allows for call analysis, and optionally forces a timeout within a specified
timeout period.

Syntax

CallObject.extendedDial(Number, TimeoutSecs, CallAnalysis,
CallHandlerOnSuccess);

Prototype

CallObject.extendedDial(

 [in] string Number,

 [in] short TimeOutSecs,

 [in] Boolean CallAnalysis,

 [in] Boolean CallHandlerOnSuccess // not used, always set to True

)

Input Parameters

Number

A string containing the telephone number to call.

TimeoutSecs

A short value indicating the maximum number of seconds to wait for an answer. Fifteen seconds
is typically a good value to specify for this parameter.

CallAnalysis

Set this Boolean value True if the call should be analyzed for special error conditions, such as
Operator interrupt, Busy Signal, etc.

CallHandlerOnSuccess

This parameter should always be set True To determine the state of the call after it has been
dialed, please use myQueue.objectChangedHandler as shown in the example below. Keep in
mind that neither the TimeOutSecs parameter nor the CallHandlerOnSuccess parameter of the
CallObject.extendedDial Method are supported in IceLib.

Return Values

None.

Example

var CallIDentifier = 0;

function MakeCall() {

Interaction Scripter Developer's Guide

221

 var CallObject = scripter.createCallObject();

 CallObject.extendedDial(Phonenumber.value, 30, "TRUE", "TRUE");

 CallIDentifier = CallObject.id;

 scripter.myQueue.objectChangedHandler = CheckCallID;

}

function CheckCallID(TypeId, ObjectId) {

 if (ObjectId == CallIDentifier) {

 var CallObject = scripter.callObject;

 CallObject.id = ObjectId;

 if (CallObject.state == 105) {

 alert("call connected successfully");

 scripter.myQueue.objectChangedHandler = null;

 CallIDentifier = 0;

 }

 }

}

Interaction Scripter Developer's Guide

222

CallObject.getAttribute Method

Definition

This method retrieves the value of the specified call object attribute. To assign a value, use the
CallObject.setAttribute method.

Syntax

CallObject.getAttribute(Name);

Prototype

CallObject.getAttribute(

 [in] string Name

 [out] string Value

)

Input Parameters

Name

The name of a call object attribute (e.g., CallID, StationName, Language, etc.) or a custom call
attribute.

Return Values

Value

The value of the requested attribute is returned as a string value (e.g., 1078924, KevinKPC,
Spanish).

Example

scripter.myQueue.objectAddedHandler = ObjectAdded;

function ObjectAdded(ObjType, ObjId) {

 // we only want call objects (type 2)

 if (ObjType == 2) {

 scripter.callObject.id = ObjId;

 var campaign =
scripter.callObject.getAttribute("IS_Attr_CampaignID");

 var workgroup =
scripter.callObject.getAttribute("AssignedWorkgroup");

 if ((campaign < > "")) {

 // move this page to the top

 IS_Action_SelectPage.click();

 // stop listening for object added notifications

 scripter.myQueue.objectAddedHandler = null;

Interaction Scripter Developer's Guide

223

 // pop the data

 location.href = "pop.htm";

 } else {

 // we are not interested in this call

 scripter.callObject.id = -1;

 }

 }

}

Interaction Scripter Developer's Guide

224

CallObject.hold Method

Definition

This method places a call on hold.

Syntax

CallObject.hold();

Prototype

CallObject.hold()

Input Parameters

None.

Return Values

None.

Example

function Hold() {

 var CallObject = scripter.callObject;

 if (CallObject.isHeld) {

 CallObject.pickup();

 } else {

 CallObject.hold();

 }

 CallObject = null;

}

Interaction Scripter Developer's Guide

225

CallObject.listen Method

Definition

This method allows a CIC user to listen in on a call. This method supports two optional parameters that
identify the name of the queue and the queue type. If this method is called without parameters, the
logged-in user's queue is used by default. To listen to a different queue, you must specify QueueName
and QueueType parameters.

Syntax

CallObject.listen(QueueName, QueueType);

Prototype

CallObject.listen(

 [in] string QueueName,

 [in] int QueueType

)

Input Parameters

QueueName

The name of the queue that you wish to connect to the queue object.

Type

Type is an integer representing a queue type. QueueType is optional and defaults to 9 (User
Queue). Valid values for queue types are:

3 Station queue

9 User queue

10 Workgroup queue

15 Line queue

Return Values

None.

Interaction Scripter Developer's Guide

226

CallObject.mute Method

Definition

This method mutes a call so the remote party cannot hear what the local (CIC) party is saying. This
method works as a toggle to turn call muting on or off. Call the method a second time to unmute the
call.

Syntax

CallObject.mute();

Prototype

CallObject.mute()

Input Parameters

None.

Return Values

None.

Example

function Mute() {

 var CallObject = scripter.callObject;

 CallObject.mute();

 if (CallObject.isMuted) {

 alert("Call has been Muted");

 }

 CallObject = null;

}

Interaction Scripter Developer's Guide

227

CallObject.pause Method

Definition

This method pauses recording of the current call. This method performs a toggling action. To resume
recording, call the method again. To stop recording, use CallObject.record.

Syntax

CallObject.pause();

Prototype

CallObject.pause();

Input Parameters

None.

Return Values

None.

Example

function Record() {

 var CallObject = scripter.callObject;

 CallObject.record();

 CallObject = null;

}

function Pause() {

 var CallObject = scripter.callObject;

 if (CallObject.isRecording || CallObject.isPaused) {

 CallObject.pause();

 }

 CallObject = null;

}

Interaction Scripter Developer's Guide

228

CallObject.pickup Method

Definition

This method picks up (answers) a call. See the CallObject.hold method for example code.

Syntax

CallObject.pickup();

Prototype

CallObject.pickup()

Input Parameters

None.

Return Values

None.

Interaction Scripter Developer's Guide

229

CallObject.playDigits Method

Definition

This method plays DTMF tones for the string of digits provided as an input parameter. DTMF stands for
Dual Tone Multi-Frequency. This term describes the tones generated when buttons are pressed on a
touch tone telephone. Each tone is actually a combination of two tones, one high frequency, and one
low frequency.

Syntax

CallObject.playDigits(StringOfDigits);

Prototype

CallObject.playDigits(

 [in] string StringOfDigits

)

Input Parameters

StringOfDigits

A string of digits to play. The string passed must contain only numeric digits, and may not
contain alphabetic characters.

Return Values

None.

Interaction Scripter Developer's Guide

230

CallObject.private Method

Definition

Call this method to make a call private so it cannot be listened to or recorded by another CIC user. This
method toggles privacy mode on or off. Call the method a second time to toggle privacy mode off.

Syntax

CallObject.private();

Prototype

CallObject.private()

Input Parameters

None.

Return Values

None.

Example

function Private() {

 var CallObject = scripter.callObject;

 CallObject.private();

 If(CallObject.isPrivate) {

 alert("Call is now Private");

 }

}

Interaction Scripter Developer's Guide

231

CallObject.record Method

Definition

This method records a call. To stop recording, call the method a second time. To pause recording, use
the CallObject.pause method. See CallObject.pause method for example code.

Syntax

CallObject.record();

Prototype

CallObject.record();

Input Parameters

None.

Return Values

None.

Interaction Scripter Developer's Guide

232

CallObject.setAttribute Method

Definition

This method sets the value of the specified call object attribute. To retrieve a value, use the
CallObject.getAttribute method.

Syntax

CallObject.setAttribute(Name, Value);

Prototype

CallObject.setAttribute(

 [in] string Name,

 [in] string Value

)

Input Parameters

Name

The name of a call object attribute& (e.g., CallID, StationName, Language, etc.), or the name of a
custom (user-defined) call attribute.

Value

The value that will be assigned to the specified call object attribute (e.g. 1078924, KevinKPC,
Spanish).

Return Values

None.

Interaction Scripter Developer's Guide

233

CallObject.voicemail Method

Definition

This method sends a call to the current user's voice mail.

Syntax

CallObject.voicemail();

Prototype

CallObject.voicemail()

Input Parameters

None.

Return Values

None.

Example

function Voicemail() {

 var CallObject = scripter.callObject;

 CallObject.voicemail();

}

Interaction Scripter Developer's Guide

234

CallObject.errorHandler Callback

Definition

CallObject.errorHandler is invoked by when an internal error occurs in the call object. If you pass the
name of a user-defined function to CallObject.errorHandler, the function will be called when this event
occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

CallObject.errorHandler (FunctionName);

Input Parameter

FunctionName

The name of the function to call when an error occurs.

Example

<script language="JavaScript">

 window.onload = Init;

 function Init() {

 scripter.callObject.errorHandler = ErrorHandler;

 }

 function ErrorHandler(ErrorId, ErrorText) {

 alert("Error occured.\n\nError Id: " + ErrorId + "\nError Text: " +
ErrorText);

 }

</script>

Interaction Scripter Developer's Guide

235

CallObject.stateChangeHandler Callback Property

Definition

This method is called whenever this object's state changes. If you pass the name of a user-defined
function to CallObject.stateChangeHandler, the function will be called whenever the call state changes.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

CallObject.stateChangeHandler(StateId, StateString)

Usage

Read Yes

Write Yes

Return Values

StateId

StateID is a number that represents the new call state of the object being watched.

Call State String Value

Alerting 1

Connected 105

Dialing 103

Disconnected 106

Initializing 100

ManualDialing 102

Offering 101

OnHold 6

Proceeding 104

StationAudio 107

StateString

StateString is a string that describes the call state:

Interaction Scripter Developer's Guide

236

StateString Description

Initalizing
CIC is formatting the telephone number and looking for a line on which to
place the outbound call. This state applies to inbound and outbound calls.

Offering
The call has been placed in a queue, but the call is not alerting. CIC is
determining if the called party is available to take the call. This state
applies to inbound calls only.

Dialing
CIC is dialing the remote telephone number. This state applies to
outbound calls only.

Proceeding
The call is proceeding through the outside telephone network.
‘Proceeding' is used if a CIC client user has enabled Call Analysis. This state
applies to outbound calls only.

Connected
Both parties are connected and are able to speak with each other. This
state applies to inbound and outbound calls.

Connected Is the same as ‘Proceeding'.

On Hold The call is on hold. This state applies to inbound and outbound calls.

Disconnected
The call is no longer active. This state applies to inbound and outbound
calls.

Manual
Dialing

A telephone handset has been picked up and a dial tone is being
generated. This state applies to outbound calls.

Station Audio An audio clip is being played to one or more CIC client users.

Alerting
A CIC client user is being notified that he or she has an incoming call. This
state applies to inbound calls.

Voice Mail The caller is leaving a voice mail message.

Variables

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function pointers
pass the address of a user-defined function to another function declared within an application. In a
script, the function pointer is simply the name of the function. For example, if your code contains a
function named "foo", the function pointer would also be named "foo".

Interaction Scripter Developer's Guide

237

When defining your custom function, you should declare StateID and StateString as arguments. e.g.:
function foo(StateID, StateString).

Interaction Scripter Developer's Guide

238

CallObject.conferenceId Property

Definition

This property returns the conference object ID if the call is included in a conference call. Use
CallObject.isParty to determine whether the call is part of a conference call.

Syntax

CallObject.conferenceId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

ConferenceID

The value returned is a number identifying the conference object. If the call is part of a
conference call, the conference object ID is returned. If the call is not part of a conference call, –
1 is returned.

Interaction Scripter Developer's Guide

239

CallObject.creationTime Property

Definition

This property returns the date and time that the call object was created.

Syntax

CallObject.creationTime

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Date

The date and time are passed as a script Date object.

Interaction Scripter Developer's Guide

240

CallObject.direction Property

Definition

This property allows you to query the direction of the call (e.g. inbound, outbound, etc.).

Syntax

CallObject.direction

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Direction

The integer return value represents the call direction (0 = inbound, 1 = outbound, 2 =
indeterminate direction or call is in a manual dialing state).

Interaction Scripter Developer's Guide

241

CallObject.id Property

Definition

This property returns or sets the unique identifier of a call object. A call identifier is typically a number
composed of 10 digits. See CallObject.extendedDial method for a source code example.

Syntax

CallObject.id

Usage

Read Yes

Write Yes

Value Assigned

CallID

To set the ID property, assign a unique number that identifies the call object.

Value Returned

CallID

The value returned is a number identifying the call object.

Interaction Scripter Developer's Guide

242

CallObject.isHeld Property

Definition

This property indicates whether or not a call is on hold.

Syntax

CallObject.isHeld

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

If the call is currently on hold, returns True. Otherwise, returns False.

Example

function Hold() {

 var CallObject = scripter.callObject;

 if (CallObject.isHeld) {

 CallObject.pickup();

 } else {

 CallObject.hold();

 }

 CallObject = null;

}

Interaction Scripter Developer's Guide

243

CallObject.isMonitored Property

Definition

This property indicates whether or not a call is being listened to.

Syntax

CallObject.isMonitored

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the call is being listened to. Otherwise, returns False.

Example

function Monitored() {

 var CallObject = scripter.callObject;

 if (CallObject.isMonitored) {

 alert("Call has been monitored.");

 }

}

Interaction Scripter Developer's Guide

244

CallObject.isMuted Property

Definition

This property indicates whether or not a call is muted.

Syntax

CallObject.isMuted

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

If the call is currently muted, returns True. Otherwise, returns False.

Example

function Mute() {

 var CallObject = scripter.callObject;

 CallObject.mute();

 if (CallObject.isMuted) {

 alert("Call has been Muted");

 }

 CallObject = null;

}

Interaction Scripter Developer's Guide

245

CallObject.isParty Property

Definition

This property indicates whether the call is included in a conference call. Use CallObject.conferenceId to
retrieve the conference ID number.

Syntax

CallObject.isParty

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

If the call is included in a conference call, returns True. Otherwise, returns False.

Interaction Scripter Developer's Guide

246

CallObject.isPaused Property

Definition

This property indicates whether recording of a call has been paused.

Syntax

CallObject.isPaused

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

If recording has been paused, returns True. Otherwise, returns False.

Example

function Record() {

 var CallObject = scripter.callObject;

 CallObject.record();

 CallObject = null;

}

function Pause() {

 var CallObject = scripter.callObject;

 if (CallObject.isRecording || CallObject.isPaused) {

 CallObject.pause();

 }

 CallObject = null;

}

Interaction Scripter Developer's Guide

247

CallObject.isPrivate Property

Definition

This property indicates whether the call is in a private state, meaning that no one can listen in on
(monitor) the call.

Syntax

CallObject.isPrivate

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

The property returns True if the call is in a private state; otherwise, returns False.

Example

function Private() {

 var CallObject = scripter.callObject;

 CallObject.private();

 If(CallObject.isPrivate) {

 alert("Call is now Private");

 }

}

Interaction Scripter Developer's Guide

248

CallObject.isRecording Property

Definition

This property indicates whether a call is being recorded.

Syntax

CallObject.isRecording

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the call is being recorded; otherwise, returns False.

Example

function Record() {

 var CallObject = scripter.callObject;

 CallObject.record();

 CallObject = null;

}

function Pause() {

 var CallObject = scripter.callObject;

 if (CallObject.isRecording || CallObject.isPaused) {

 CallObject.pause();

 }

 CallObject = null;

}

Interaction Scripter Developer's Guide

249

CallObject.lastError Property

Definition

This property retrieves the text of the last error that occurred in the CallObject. Each time a method or
property is called on the CallObject, this value is cleared.

Syntax

CallObject.lastError

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The text message of the last error that occurred.

Example

function GetLastError() {

 alert(scripter.callObject.lastError);

}

Interaction Scripter Developer's Guide

250

CallObject.lastErrorId Property

Definition

This property retrieves the id of the last error that occurred in the CallObject. Each time a method or
property is called on the CallObject, this value is cleared.

Syntax

CallObject.lastErrorId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Integer

The id of the last error that occurred.

Example

<html>

<head>

 <script language=javascript>

 window.onload = Init();

 function Init() {

 setTimer("SetErrorInfo();", 1000);

 }

 function SetErrorInfo() {

 ErrorInfo.value = scripter.callObject.lastError;

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td colspan=4><input name="ErrorInfo" value="No Errors"
style="width:600"></input>

Interaction Scripter Developer's Guide

251

 </td>

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

252

CallObject.localId Property

Definition

This property returns the Station Id associated with the call.

Syntax

CallObject.localId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

localID

When you retrieve this value, a string identifying the Station Id is returned.

Example

<html>

<head>

 <TITLE>Scripter Object</TITLE>

 <meta name="IS_System_AgentName">

 <script language="JavaScript">

 var CallIDentifier = 0;

 function MakeCall() {

 var CallObject = scripter.createCallObject();

 CallObject.extendedDial(Phonenumber.value, 30, "TRUE", "TRUE");

 CallIDentifier = CallObject.id;

 scripter.myQueue.objectChangedHandler = CheckCallID;

 LocalId.value = CallObject.localId;

 LocalLocation.value = CallObject.localLocation;

Interaction Scripter Developer's Guide

253

 LocalName.value = CallObject.localName;

 }

 function CheckCallID(TypeId, ObjectId) {

 if (ObjectId == CallIDentifier) {

 var CallObject = scripter.callObject;

 CallObject.id = ObjectId;

 if (CallObject.state == 105) {

 alert("call connected successfully");

 RemoteId.value = CallObject.remoteId;

 RemoteLocation.value = CallObject.remoteLocation;

 RemoteName.value = CallObject.remoteName;

 scripter.myQueue.objectChangedHandler = null;

 call.value = 0;

 CallIDentifier = 0;

 }

 }

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td><input type=button value="dial"
onclick="MakeCall();"></input>

 </td>

 <td>Phonenumber</td>

 <td><input name="Phonenumber" id="Phonenumber"></input>

 </td>

 </tr>

 <tr>

 <td>Local Id</td>

 <td><input name="LocalId" value="" style="width:100"></input>

Interaction Scripter Developer's Guide

254

 </td>

 <td>Local Location</td>

 <td><input name="LocalLocation" value=""
style="width:100"></input>

 </td>

 <td>Local Name</td>

 <td><input name="LocalName" value="" style="width:100"></input>

 </td>

 </tr>

 <tr>

 <td>Remote Id</td>

 <td><input name="RemoteId" value="" style="width:100"></input>

 </td>

 <td>Remote Location</td>

 <td><input name="RemoteLocation" value=""
style="width:100"></input>

 </td>

 <td>Remote Name</td>

 <td><input name="RemoteName" value="" style="width:100"></input>

 </td>

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

255

CallObject.localLocation Property

Definition

This property returns the phone extension of the station participating in an inbound or outbound call.

Syntax

CallObject.localLocation

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

localLocation

The phone extension of the station participating in an inbound or outbound call.

Example

<html>

<head>

 <title>Scripter Object</title>

 <meta name="IS_System_AgentName">

 <script language="JavaScript">

 var CallIDentifier = 0;

 function MakeCall() {

 var CallObject = scripter.createCallObject();

 CallObject.extendedDial(Phonenumber.value, 30, "TRUE", "TRUE");

 CallIDentifier = CallObject.id;

 scripter.myQueue.objectChangedHandler = CheckCallID;

 LocalId.value = CallObject.localId;

 LocalLocation.value = CallObject.localLocation;

 LocalName.value = CallObject.localName;

 }
 function CheckCallID(TypeId, ObjectId) {

Interaction Scripter Developer's Guide

256

 if (ObjectId == CallIDentifier) {

 var CallObject = scripter.callObject;

 CallObject.id = ObjectId;

 if (CallObject.state == 105) {

 alert("call connected successfully");

 RemoteId.value = CallObject.remoteId;

 RemoteLocation.value = CallObject.remoteLocation;

 RemoteName.value = CallObject.remoteName;

 scripter.myQueue.objectChangedHandler = null;

 call.value = 0;

 CallIDentifier = 0;

 }

 }

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td><input type=button value="dial"
onclick="MakeCall();"></input></td>

 <td>Phonenumber</td>

 <td><input name="Phonenumber" id="Phonenumber"></input></td>

 </tr>

 <tr>

 <td>Local Id</td>

 <td><input name="LocalId" value=""
style="width:100"></input></td>

 <td>Local Location</td>

 <td><input name="LocalLocation" value=""
style="width:100"></input></td>

 <td>Local Name</td>

 <td><input name="LocalName" value=""
style="width:100"></input></td>

 </tr>

Interaction Scripter Developer's Guide

257

 <tr>

 <td>Remote Id</td>

 <td><input name="RemoteId" value=""
style="width:100"></input></td>

 <td>Remote Location</td>

 <td><input name="RemoteLocation" value=""
style="width:100"></input></td>

 <td>Remote Name</td>

 <td><input name="RemoteName" value=""
style="width:100"></input></td>

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

258

CallObject.localName Property

Definition

This property returns the name of the logged in user.

Syntax

CallObject.localName

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The name of the logged in user that this call belongs to.

Example

<html>

<head>

 <title>Scripter Object</title>

 <meta name="IS_System_AgentName">

 <script language="JavaScript">

 var CallIDentifier = 0;

 function MakeCall() {

 var CallObject = scripter.createCallObject();

 CallObject.extendedDial(Phonenumber.value, 30, "TRUE", "TRUE");

 CallIDentifier = CallObject.id;

 scripter.myQueue.objectChangedHandler = CheckCallID;

 LocalId.value = CallObject.localId;

 LocalLocation.value = CallObject.localLocation;

 LocalName.value = CallObject.localName;

Interaction Scripter Developer's Guide

259

 }

 function CheckCallID(TypeId, ObjectId) {

 if (ObjectId == CallIDentifier) {

 var CallObject = scripter.callObject;

 CallObject.id = ObjectId;

 if (CallObject.state == 105) {

 alert("call connected successfully");

 RemoteId.value = CallObject.remoteId;

 RemoteLocation.value = CallObject.remoteLocation;

 RemoteName.value = CallObject.remoteName;

 scripter.myQueue.objectChangedHandler = null;

 call.value = 0;

 CallIDentifier = 0;

 }

 }

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td><input type=button value="dial"
onclick="MakeCall();"></input></td>

 <td>Phonenumber</td>

 <td><input name="Phonenumber" id="Phonenumber"></input></td>

 </tr>

 <tr>

 <td>Local Id</td>

 <td><input name="LocalId" value=""
style="width:100"></input></td>

 <td>Local Location</td>

 <td><input name="LocalLocation" value=""
style="width:100"></input></td>

 <td>Local Name</td>

 <td><input name="LocalName" value=""
style="width:100"></input></td>

Interaction Scripter Developer's Guide

260

 </tr>

 <tr>

 <td>Remote Id</td>

 <td><input name="RemoteId" value=""
style="width:100"></input></td>

 <td>Remote Location</td>

 <td><input name="RemoteLocation" value=""
style="width:100"></input></td>

 <td>Remote Name</td>

 <td><input name="RemoteName" value=""
style="width:100"></input></td>

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

261

CallObject.remoteId Property

Definition

This property returns the formatted telephone number of the person outside CIC who is making or
receiving a call.

Syntax

CallObject.remoteId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The formatted telephone number of the other party.

Example

<html>

<head>

 <title>Scripter Object</title>

 <meta name="IS_System_AgentName">

 <script language="JavaScript">

 var CallIDentifier = 0;

 function MakeCall() {

 var CallObject = scripter.createCallObject();

 CallObject.extendedDial(Phonenumber.value, 30, "TRUE", "TRUE");

 CallIDentifier = CallObject.id;

 scripter.myQueue.objectChangedHandler = CheckCallID;

 LocalId.value = CallObject.localId;

 LocalLocation.value = CallObject.localLocation;

 LocalName.value = CallObject.localName;

Interaction Scripter Developer's Guide

262

 }

 function CheckCallID(TypeId, ObjectId) {

 if (ObjectId == CallIDentifier) {

 var CallObject = scripter.callObject;

 CallObject.id = ObjectId;

 if (CallObject.state == 105) {

 alert("call connected successfully");

 RemoteId.value = CallObject.remoteId;

 RemoteLocation.value = CallObject.remoteLocation;

 RemoteName.value = CallObject.remoteName;

 scripter.myQueue.objectChangedHandler = null;

 call.value = 0;

 CallIDentifier = 0;

 }

 }

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td><input type=button value="dial"
onclick="MakeCall();"></input></td>

 <td>Phonenumber</td>

 <td><input name="Phonenumber" id="Phonenumber"></input></td>

 </tr>

 <tr>

 <td>Local Id</td>

 <td><input name="LocalId" value=""
style="width:100"></input></td>

 <td>Local Location</td>

 <td><input name="LocalLocation" value=""
style="width:100"></input></td>

Interaction Scripter Developer's Guide

263

 <td>Local Name</td>

 <td><input name="LocalName" value=""
style="width:100"></input></td>

 </tr>

 <tr>

 <td>Remote Id</td>

 <td><input name="RemoteId" value=""
style="width:100"></input></td>

 <td>Remote Location</td>

 <td><input name="RemoteLocation" value=""
style="width:100"></input></td>

 <td>Remote Name</td>

 <td><input name="RemoteName" value=""
style="width:100"></input></td>

 </tr>

 </table>

</body>

</HTML>

Interaction Scripter Developer's Guide

264

CallObject.remoteLocation Property

Definition

This property returns the unformatted telephone number of the person outside CIC who is making or
receiving a call.

Syntax

CallObject.remoteLocation

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

This string contains an unformatted telephone number.

Example

<html>

<head>

 <title>Scripter Object</title>

 <meta name="IS_System_AgentName">

 <script language="JavaScript">

 var CallIDentifier = 0;

 function MakeCall() {

 var CallObject = scripter.createCallObject();

 CallObject.extendedDial(Phonenumber.value, 30, "TRUE", "TRUE");

 CallIDentifier = CallObject.id;

 scripter.myQueue.objectChangedHandler = CheckCallID;

 LocalId.value = CallObject.localId;

 LocalLocation.value = CallObject.localLocation;

 LocalName.value = CallObject.localName;

Interaction Scripter Developer's Guide

265

 }

 function CheckCallID(TypeId, ObjectId) {

 if (ObjectId == CallIDentifier) {

 var CallObject = scripter.callObject;

 CallObject.id = ObjectId;

 if (CallObject.state == 105) {

 alert("call connected successfully");

 RemoteId.value = CallObject.remoteId;

 RemoteLocation.value = CallObject.remoteLocation;

 RemoteName.value = CallObject.remoteName;

 scripter.myQueue.objectChangedHandler = null;

 call.value = 0;

 CallIDentifier = 0;

 }

 }

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td><input type=button value="dial"
onclick="MakeCall();"></input></td>

 <td>Phonenumber</td>

 <td><input name="Phonenumber" id="Phonenumber"></input></td>

 </tr>

 <tr>

 <td>Local Id</td>

 <td><input name="LocalId" value=""
style="width:100"></input></td>

 <td>Local Location</td>

 <td><input name="LocalLocation" value=""
style="width:100"></input></td>

Interaction Scripter Developer's Guide

266

 <td>Local Name</td>

 <td><input name="LocalName" value=""
style="width:100"></input></td>

 </tr>

 <tr>

 <td>Remote Id</td>

 <td><input name="RemoteId" value=""
style="width:100"></input></td>

 <td>Remote Location</td>

 <td><input name="RemoteLocation" value=""
style="width:100"></input></td>

 <td>Remote Name</td>

 <td><input name="RemoteName" value=""
style="width:100"></input></td>

 </tr>

 </table>

</body>
</html>

Interaction Scripter Developer's Guide

267

CallObject.remoteName Property

Definition

This property returns or sets the name of the caller.

Syntax

CallObject.remoteName

Usage

Read Yes

Write Yes

Value Assigned

String

A string containing the caller name you wish to assign.

Value Returned

String

For inbound calls, the name of the person that was looked up in the CIC whitepages. If a name
does not exist, the city and state or country of the call will be used if it can be determined.

Example

<html>

 <head>

 <title>Scripter Object</title>

 <meta name="IS_System_AgentName">

 <script language="JavaScript">

 var CallIDentifier = 0;

 function MakeCall() {

 var CallObject = scripter.createCallObject();

 CallObject.extendedDial(Phonenumber.value, 30, "TRUE",
"TRUE");

 CallIDentifier = CallObject.id;

 scripter.myQueue.objectChangedHandler = CheckCallID;

 LocalId.value = CallObject.localId;

Interaction Scripter Developer's Guide

268

 LocalLocation.value = CallObject.localLocation;

 LocalName.value = CallObject.localName;

 }

 function CheckCallID(TypeId, ObjectId) {

 if (ObjectId == CallIDentifier) {

 var CallObject = scripter.callObject;

 CallObject.id = ObjectId;

 if (CallObject.state == 105) {

 alert("call connected successfully");

 RemoteId.value = CallObject.remoteId;

 RemoteLocation.value = CallObject.remoteLocation;

 RemoteName.value = CallObject.remoteName;

 scripter.myQueue.objectChangedHandler = null;

 call.value = 0;

 CallIDentifier = 0;

 }

 }

 }

 </script>

 </head>

 <body>

 <table>

 <tr>

 <td><input type=button value="dial"
onclick="MakeCall();"></input>

 </td>

 <td>Phonenumber</td>

 <td><input name="Phonenumber" id="Phonenumber"></input>

 </td>

 </tr>

 <tr>

 <td>Local Id</td>

Interaction Scripter Developer's Guide

269

 <td><input name="LocalId" value=""
style="width:100"></input></td>

 <td>Local Location</td>

 <td><input name="LocalLocation" value=""
style="width:100"></input></td>

 <td>Local Name</td>

 <td><input name="LocalName" value=""
style="width:100"></input></td>

 </tr>

 <tr>

 <td>Remote Id</td>

 <td><input name="RemoteId" value=""
style="width:100"></input></td>

 <td>Remote Location</td>

 <td><input name="RemoteLocation" value=""
style="width:100"></input></td>

 <td>Remote Name</td>

 <td><input name="RemoteName" value=""
style="width:100"></input></td>

 </tr>

 </table>

 </body>

 </html>

Interaction Scripter Developer's Guide

270

CallObject.state Property

Definition

This property returns the integer value corresponding to the call state of the call object.

Syntax

CallObject.state

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

CallState

The return value represents the Call State string. The table below lists Call State values for
recent releases of Customer Interaction Center.

Call State String Value

Alerting 1

Connected 105

Dialing 103

Disconnected 106

Initializing 100

ManualDialing 102

Offering 101

OnHold 6

Proceeding 104

StationAudio 107

Example

Interaction Scripter Developer's Guide

271

<html>

<head>

 <title>Scripter Object</title>

 <meta name="IS_System_AgentName">

 <script language="JavaScript">

 var CallIDentifier = 0;

 function MakeCall() {

 var CallObject = scripter.createCallObject();

 CallObject.extendedDial(Phonenumber.value, 30, "TRUE", "TRUE");

 CallIDentifier = CallObject.id;

 scripter.myQueue.objectChangedHandler = CheckCallID;

 LocalId.value = CallObject.localId;

 LocalLocation.value = CallObject.localLocation;

 LocalName.value = CallObject.localName;

 }

 function CheckCallID(TypeId, ObjectId) {

 if (ObjectId == CallIDentifier) {

 var CallObject = scripter.callObject;

 CallObject.id = ObjectId;

 if (CallObject.state == 105) {

 alert("call connected successfully");

 RemoteId.value = CallObject.remoteId;

 RemoteLocation.value = CallObject.remoteLocation;

 RemoteName.value = CallObject.remoteName;

 scripter.myQueue.objectChangedHandler = null;

 call.value = 0;

 CallIDentifier = 0;

 }

 }

 }

 </script>

Interaction Scripter Developer's Guide

272

</head>

<body>

 <table>

 <tr>

 <td><input type=button value="dial"
onclick="MakeCall();"></input></td>

 <td>Phonenumber</td>

 <td><input name="Phonenumber" id="Phonenumber"></input></td>

 </tr>

 <tr>

 <td>Local Id</td>

 <td><input name="LocalId" value=""
style="width:100"></input></td>

 <td>Local Location</td>

 <td><input name="LocalLocation" value=""
style="width:100"></input></td>

 <td>Local Name</td>

 <td><input name="LocalName" value=""
style="width:100"></input></td>

 </tr>

 <tr>

 <td>Remote Id</td>

 <td><input name="RemoteId" value=""
style="width:100"></input></td>

 <td>Remote Location</td>

 <td><input name="RemoteLocation" value=""
style="width:100"></input></td>

 <td>Remote Name</td>

 <td><input name="RemoteName" value=""
style="width:100"></input></td>

 </tr>

 </table>

</body>
</html>

Interaction Scripter Developer's Guide

273

CallObject.stateString Property

Definition

This property retrieves or sets the string value that is displayed as call state information in the CIC client.
This can be, but does not have to be, the actual call state. For example, although a call in voice mail has
a state of ‘Connected', the CallStateString displays ‘VoiceMail' for a CIC client user.

Syntax

CallObject.stateString

Usage

Read Yes

Write Yes

Value Assigned

String

Any string of characters that you wish to assign to the call's state string attribute.

Value Returned

String

The current call state string is returned. See callObject.stateChangeHandler for additional
details.

Interaction Scripter Developer's Guide

274

CallObject.pauseSecureRecord Method

Definition

This method can be used to avoid recording sensitive information, such as a Social Security number or
credit card number, when you are connected to a call interaction. This procedure assumes you are
currently connected to a call. You do not have to be currently recording the call interaction. Once
pressed, recording will remain paused until CallObject.resumeSecureRecord is invoked.

The Secure Recording Pause Interactions Security right enables you to secure pause a recording of a call.
Error handling should be added to the call object to catch any permission issues or any other problems
that may prevent the recording from being paused.

Syntax

CallObject.pauseSecureRecord();

Prototype

CallObject.pauseSecureRecord()

Input Parameters

None.

Return Values

None.

Example

var callObj;

function IS_Event_NewPredictiveCall(CallId) {

 AssignCallIdToObject(CallId);

}

function AssignCallIdToObject(callId) {

 callObj = scripter.createCallObject();

 callObj.id = callId;

 callObj.errorHandler = ErrorHandler;

}
function ErrorHandler(ErrorId, ErrorText) {

 alert("Error occured.\n\nError Id: " + ErrorId + "\nError Text: " +
ErrorText);

}

function pauseSecureRecord() {

 callObj.pauseSecureRecord();

Interaction Scripter Developer's Guide

275

}

function resumeSecureRecord() {

 callObj.resumeSecureRecord();

}

Interaction Scripter Developer's Guide

276

CallObject.resumeSecureRecord Method

Definition

This method resumes recording that was paused by invoking the CallObject.pauseSecureRecord method.

Syntax

CallObject.resumeSecureRecord();

Prototype

CallObject.resumeSecureRecord()

Input Parameters

None.

Return Values

None.

Example

var callObj;

function IS_Event_NewPredictiveCall(CallId) {

 AssignCallIdToObject(CallId);

}

function AssignCallIdToObject(callId) {

 callObj = scripter.createCallObject();

 callObj.id = callId;

 callObj.errorHandler = ErrorHandler;

}

function ErrorHandler(ErrorId, ErrorText) {

 alert("Error occured.\n\nError Id: " + ErrorId + "\nError Text: " +
ErrorText);

}

function pauseSecureRecord() {

 callObj.pauseSecureRecord();

}

function resumeSecureRecord() {

 callObj.resumeSecureRecord();

Interaction Scripter Developer's Guide

277

}

Interaction Scripter Developer's Guide

278

campaign object

campaign object

The campaign object encapsulates the Name, ID and Status of a Dialer campaign.

Methods

None.

Callbacks

None.

Properties

campaignName Returns the display name of the campaign.

campaignId Returns a GUID that identifies the campaign.

campaignState Returns an interger value corresponding to the state of the campaign.

campaignStateString Returns the string value of the current state of the campaign.

Interaction Scripter Developer's Guide

279

campaign.campaignName Property

Definition

This property returns the display name of the campaign.

Syntax

campaign.campaignName

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The name of the campaign.

Interaction Scripter Developer's Guide

280

campaign.campaignId Property

Definition

This property returns a GUID that identifies the campaign.

Syntax

campaign.campaignId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The GUID of the campaign.

Interaction Scripter Developer's Guide

281

campaign.campaignState Property

Definition

This property returns an integer value corresponding to the state of the campaign.

Syntax

campaign.campaignState

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Integer

An integer value representing the state of the campaign.

Value Meaning

-1 invalid

0 Paused

1 Manual Off

2 Manual On

3 Manual On (Schedule only)

4 Auto Off

5 Auto On

6 Auto Off (Schedule only)

7 Auto On (Schedule only)

Interaction Scripter Developer's Guide

282

campaign.campaignStateString Property

Definition

This property returns the string value of the current state of the campaign.

Syntax

campaign.campaignStateString

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The string value of the current state of the campaign (Paused/Unpaused, Scheduled calls only,
Auto On, Manual On).

Interaction Scripter Developer's Guide

283

ChatObject

ChatObject

ChatObject manipulates chat objects. Chat objects are very similar to call objects. The source examples
for call objects can be adapted for chat objects. The methods and properties supported by
scripter.chatObject are listed below. Click on a link for information concerning input parameters and
return values.

Methods

ChatObject.disconnect Disconnects the current chat session.

ChatObject.getAttribute Retrieves the value of the specified chat object attribute.

ChatObject.listen Allows a CIC user to listen in on a chat.

ChatObject.pause Pauses recording of the current chat session.

ChatObject.pickup Picks up (answers) a chat.

ChatObject.private

Makes a chat private so it cannot be seen to or recorded by
another CIC user.

ChatObject.record Records a chat.

ChatObject.sendChatMessage

Sends a chat message to the remote party on behalf of the current
user.

ChatObject.setAttribute Sets the value of specified chat object attribute.

Callbacks

ChatObject.errorHandler

Name of the function to be called when an error
occurs. Compatible with scripts for Scripter .NET
Client or Interaction Connect.

ChatObject.ObjectDestroyedHandler

ChatObject.objectDestroyedHandler is invoked
when the chat object is no longer valid.
Compatible with scripts for Scripter .NET Client or
Interaction Connect.

ChatObject.ObjectSpecificChangeHandler

Invoked when something changes about this chat
object that is not generic to all chat objects.

Interaction Scripter Developer's Guide

284

Compatible with scripts for Scripter .NET Client or
Interaction Connect.

ChatObject.ObjectSpecificErrorHandler

Invoked when an error occurs with the chat object.
Compatible with scripts for Scripter .NET Client or
Interaction Connect.

ChatObject.ReceivedFileHandler

This handler is called when a chat object receives a
new file. Compatible with scripts for Scripter .NET
Client or Interaction Connect.

ChatObject.ReceivedURLHandler

This handler is called when a chat object receives a
new URL. Compatible with scripts for Scripter .NET
Client or Interaction Connect.

ChatObject.stateChangeHandler

This handler is invoked whenever the call state
changes. Compatible with scripts for Scripter .NET
Client or Interaction Connect.

ChatObject.SubObjectChangeHandler

This method is called when a sub-object is affected
by an event. Compatible with scripts for Scripter
.NET Client or Interaction Connect.

ChatObject.requestedAttributeReturnHandler

Allows a script to asynchronously get a chat
attribute by first setting this callback and then
calling the chatObject.getAttribute method. Use
this callback only in scripts for Interaction Connect.

ChatObject.chatObjectInitializedHandler

Allows a script to start a chat after waiting
asynchronously for a ChatObject to be created.
Use this callback only in scripts for Interaction
Connect.

Properties

ChatObject.creationTime Returns the date and time that the chat object was created.

ChatObject.direction Returns the direction of the chat (e.g. inbound, outbound, etc.).

ChatObject.id Assigns or returns the ID of the chat object.

ChatObject.isMonitored Indicates whether or not a chat is being listened to.

ChatObject.isPaused Indicates whether recording of a chat has been paused.

Interaction Scripter Developer's Guide

285

ChatObject.isPrivate
Indicates whether is in a private state, meaning that no one can
monitor the chat.

ChatObject.isRecording Indicates whether a chat is being recorded.

ChatObject.lastError

Returns the text of the last error that occurred. This property is
automatically cleared before each method or property call on this
object.

ChatObject.lastErrorId
Returns the id of the last error that occurred. This property is
automatically cleared before each method or property call on this
object.

ChatObject.localId Returns the Station Id of the CIC user associated with the chat.

ChatObject.localLocation

Returns the phone extension of the CIC station participating in a
chat.

ChatObject.localName Returns the name of the connected party in a chat object.

ChatObject.remoteId Returns the registered name of the remote chat user.

ChatObject.messages

Returns an array of messages about a chat interaction after the chat
object has been initialized.

ChatObject.RemoteLocation Returns the IP address of the chat user.

ChatObject.RemoteName Retrieves or sets the name of the chat user.

ChatObject.state

Returns the numeric call state value for a chat object. This value
indicates the current condition of the chat object.

ChatObject.stateString

Returns or assigns the string value displayed in the State field of a
queue (such as the "My Calls" queue). State strings describe the
current condition of a chat object.

Interaction Scripter Developer's Guide

286

ChatObject.chatObjectInitializedHandler Callback

Definition

This callback allows a script to start a chat after waiting asynchronously for a ChatObject to be created.

Compatibility

Use this callback only in scripts for Interaction Connect.

Example

function main()

{

 var chatObject = scripter.createChatObject();

 chatObject.chatObjectInitializedHandler = uponChatObjectInitialization;

 chatObject.id = exampleId;

}

function uponChatObjectInitialization(chatObject)
{

 console.log('printing the chat direction ' + chatObject.direction);
}

Interaction Scripter Developer's Guide

287

ChatObject.disconnect Method

Definition

This method disconnects the current chat.

Syntax

ChatObject.disconnect();

Prototype

ChatObject.disconnect()

Input Parameters

None.

Return Values

None.

Interaction Scripter Developer's Guide

288

ChatObject.getAttribute Method

Definition

This method retrieves the value of the specified chat object attribute.

Syntax

ChatObject.getAttribute(Name);

Prototype

ChatObject.getAttribute(

 [in] string Name

 [out] string Value

)

Input Parameters

Name

The name of a chat object attribute (e.g., ChatID, StationName, Language) or a custom chat
attribute.

Return Values

Value

The value of the requested attribute is returned as a string value (e.g., 1078924, KevinKPC,
Spanish).

Interaction Scripter Developer's Guide

289

ChatObject.listen Method

Definition

This method allows a CIC user to listen in on a chat session.

Syntax

ChatObject.listen();

Prototype

ChatObject.listen()

Input Parameters

None.

Return Values

None.

Interaction Scripter Developer's Guide

290

ChatObject.pause Method

Definition

This method pauses recording of the current chat. This method performs a toggling action. To resume
recording, call the method again. To stop recording, use ChatObject.record.

Syntax

ChatObject.pause();

Prototype

ChatObject.pause()

Input Parameters

None.

Return Values

None.

Interaction Scripter Developer's Guide

291

ChatObject.pickup Method

Definition

This method picks up (answers) a chat.

Syntax

ChatObject.pickup();

Prototype

ChatObject.pickup()

Input Parameters

None.

Return Values

None.

Interaction Scripter Developer's Guide

292

ChatObject.private Method

Definition

Call this method to make a chat session private so it cannot be listened to or recorded by another CIC
user. This method toggles privacy mode on or off. Call the method a second time to toggle privacy mode
off.

Syntax

ChatObject.private();

Prototype

ChatObject.private()

Input Parameters

None.

Return Values

None.

Interaction Scripter Developer's Guide

293

ChatObject.record Method

Definition

This method records a chat session. To stop recording, call the method a second time. To pause
recording, use ChatObject.pause.

Syntax

ChatObject.record();

Prototype

ChatObject.record()

Input Parameters

None.

Return Values

None.

Interaction Scripter Developer's Guide

294

ChatObject.sendChatMessage Method

Definition

Sends a chat message to the remote party on behalf of the current user.

Syntax

ChatObject.sendChatMessage("Hello, World");

Input Parameters

form

The input parameter is a string containing the text of the chat message.

Example

function sendMessage(form)

{ chatObject.sendChatMessage(form.userMsg.value); }

Interaction Scripter Developer's Guide

295

ChatObject.setAttribute Method

Definition

This method sets the value of the specified chat object attribute.

Syntax

ChatObject.setAttribute(Name, Value);

Prototype

ChatObject.setAttribute(

 [in] string Name,

 [in] string Value

)

Input Parameters

Name

The name of a chat object attribute (e.g., ChatID, StationName, Language), or the name of a
custom (user-defined) call attribute.

Value

The value that will be assigned to the specified chat object attribute (e.g., 1078924, KevinKPC,
Spanish).

Return Values

None.

Interaction Scripter Developer's Guide

296

ChatObject.errorHandler Callback Property

Definition

ChatObject.errorHandler is invoked by when an internal error occurs in the chat object. If you pass the
name of a user-defined function to ChatObject.errorHandler, the function will be called when this event
occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ChatObject.errorHandler

Usage

Read Yes

Write Yes

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, define the errorId, and errorText as arguments to the
function. e.g.: function foo(errorId, errorText).

Interaction Scripter Developer's Guide

297

ChatObject.ObjectDestroyedHandler Callback Property

Definition

ChatObject.objectDestroyedHandler is invoked when the chat object is no longer valid. You will not be
able to access anything about the object after this function is called on the object. If you pass the name
of a user-defined function to ConferenceObject.callobjectDestroyedHandler, the function will be called
when this event occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ChatObject.ObjectDestroyedHandler();

Usage

Read Yes

Write Yes

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, no special arguments are required. e.g.: function foo().

Interaction Scripter Developer's Guide

298

ChatObject.ObjectSpecificChangeHandler Callback Property

Definition

ChatObject.objectSpecificChangeHandler is invoked when something changes about this chat object that
is not generic to all chat objects. You need to query the object itself to see what changed. If you pass the
name of a user-defined function to ChatObject.objectSpecificChangeHandler, the function will be called
when this event occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ChatObject.objectSpecificChangeHandler();

Usage

Read Yes

Write Yes

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, no special arguments are required. e.g.: function foo().

Interaction Scripter Developer's Guide

299

ChatObject.ObjectSpecificErrorHandler Callback Property

Definition

ChatObject.ObjectSpecificErrorHandler is invoked when an error occurs with the chat object. If you pass
the name of a user-defined function, that function will be called when an error occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ChatObject.ObjectSpecificErrorHandler();

Value Assigned

Function Pointer

Set this property to a function you wish to be called when an error occurs with the chat object.

Example

<script language ="javascript">

 window.onload = Init;

function Init() {

 scripter.chatObject.ObjectSpecificErrorHandler = myFunction;

}

function myFunction() {

 alert("A chat object error occurred.");

}
</script>

Interaction Scripter Developer's Guide

300

ChatObject.ReceivedFileHandler Callback Property

Definition

This handler is called when a chat object receives a new file.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ChatObject.ReceivedFileHandler (ChatId, User, Filename, FileData);

Input Parameters

ChatId

ID of the chat object.

User

The user name of the person who sent the file.

ChatId

ID of the chat object.

Filename

The fully qualified name of the file received.

FileData

The data contained in the file.

Interaction Scripter Developer's Guide

301

ChatObject.ReceivedURLHandler Callback Property

Definition

This handler is called when a chat object receives a new URL.

Syntax

ChatObject.ReceivedURLHandler();

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ChatObject.ReceivedFileHandler (ChatId, User, URL);

Input Parameters

ChatId

ID of the chat object.

User

The user ID of the user who pushed the URL to the chat.

URL

A universal resource locator.

Interaction Scripter Developer's Guide

302

ChatObject.stateChangeHandler Callback Property

Definition

This method is called whenever this object's state changes. If you pass the name of a user-defined
function to ChatObject.stateChangeHandler, the function will be called whenever the Call State changes.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ChatObject.stateChangeHandler(StateId, StateString)

Input Parameters

StateId

StateID is a number that represents the new call state of the object being watched.

Alerting 1

Connected 105

Dialing 103

Disconnected 106

Initializing 100

ManualDialing 102

Offering 101

OnHold 6

Proceeding 104

StationAudio 107

StateString

StateString is a string that describes the call state.

Interaction Scripter Developer's Guide

303

Initializing
CIC is formatting the telephone number and looking for a line on which to
place the outbound call. This state applies to inbound and outbound calls.

Offering
The call has been placed in a queue, but the call is not alerting. CIC is
determining if the called party is available to take the call. This state
applies to inbound calls only.

Dialing
CIC is dialing the remote telephone number. This state applies to
outbound calls only.

Proceeding
The call is proceeding through the outside telephone network.
‘Proceeding' is used if a CIC client user has enabled Call Analysis. This state
applies to outbound calls only.

Connected
Both parties are connected and are able to speak with each other. This
state applies to inbound and outbound calls.

Connected Is the same as ‘Proceeding'.

On Hold The call is on hold. This state applies to inbound and outbound calls.

Disconnected
The call is no longer active. This state applies to inbound and outbound
calls.

Manual
Dialing

A telephone handset has been picked up and a dial tone is being
generated. This state applies to outbound calls.

Station Audio An audio clip is being played to one or more CIC client users.

Alerting
A CIC client user is being notified that he or she has an incoming call. This
state applies to inbound calls.

Voice Mail The caller is leaving a voice mail message.

Variables

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, you should declare StateID and StateString as
arguments. E.g. function foo(StateID, StateString).

Interaction Scripter Developer's Guide

304

ChatObject.SubObjectChangeHandler Callback Property

Definition

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ChatObject.subObjectChangeHandler(TypeId, CallID, ChangeId)

Input Parameters

TypeId

TypeId is an integer that represents the type of sub-object.

2 Call Object

19 Chat Object

20 Conference Object

70 Generic Object

CallID

The Id of the sub-object.

ChangeId

An integer that represents the type of change that occurred in a conference object.

80
A party call changed. This indicates that something changed about the call. For
example, placing a call on hold changes the call.

82
A party was deallocated (destroyed). Two minutes have passed since the call was
disconnected, and it is being removed from the conference.

83 The call was just added to the conference.

84 The call was just removed from the conference (e.g. transferred to another queue).

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an

Interaction Scripter Developer's Guide

305

application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, you may define the following arguments in the function.
e.g.: function foo(Type ID, CallID, ChangeID).

Example

The messages property of the chatObject returns an array of messages of that chatInteraction after the
chatObject had been initialized. The SubObjectChangeHandler can be an assigned callback that gets
alerted with new messages when the chat Interaction receives new messages.

function chatInitialized(){

if(chatObject.messages !== undefined)

{ renderChatBox(chatObject.messages); chatObject.SubObjectChangeHandler =
messagesChanged; }

}

function messagesChanged()

{ renderChatBox(chatObject.messages); }

Each message is an object with the following properties:

chatMember.displayName

chatMember.chatMemberType

chatMember.interactionId

chatMember.userId

messageType

text

timestamp

Interaction Scripter Developer's Guide

306

ChatObject.creationTime Property

Definition

This property returns the date and time that the chat object was created.

Syntax

ChatObject.creationTime

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Date

The date and time are passed as a script Date object.

Interaction Scripter Developer's Guide

307

ChatObject.direction Property

Definition

This property allows you to query the direction of the chat (e.g. inbound, outbound, etc.).

Syntax

ChatObject.direction

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Direction

An integer value representing the chat direction.

0 None

1 Inbound Call

2 Outbound Call

Interaction Scripter Developer's Guide

308

ChatObject.id Property

Definition

The ID property assigns or returns the ID of the chat object.

Syntax

ChatObject.Id

Usage

Read Yes

Write Yes

Value Assigned

pVal

A chat object ID, passed as string data.

Value Returned

String

The chat ID is returned as a number.

Interaction Scripter Developer's Guide

309

ChatObject.isMonitored Property

Definition

This property indicates whether or not a chat session is being listened to.

Syntax

ChatObject.isMonitored

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the chat is being listened to. Otherwise, returns False.

Interaction Scripter Developer's Guide

310

ChatObject.isPaused Property

Definition

This property indicates whether recording of this chat session has been paused.

Syntax

ChatObject.isPaused

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

If recording has been paused, returns True. Otherwise, returns False.

Interaction Scripter Developer's Guide

311

ChatObject.isPrivate Property

Definition

This property indicates whether the chat is in a private state, meaning that no one can listen in on
(monitor) the session.

Syntax

ChatObject.isPrivate

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

The property returns True if the chat is in a private state; otherwise, returns False.

Interaction Scripter Developer's Guide

312

ChatObject.isRecording Property

Definition

This property indicates whether the chat session is being recorded.

Syntax

ChatObject.isRecording

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the chat session is being recorded; otherwise, returns False.

Interaction Scripter Developer's Guide

313

ChatObject.lastError Property

Definition

This property retrieves the text of the last error that occurred in the ChatObject. Each time a method or
property is called on the ChatObject, this value is cleared.

Syntax

ChatObject.lastError

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The text message of the last error that occurred.

Interaction Scripter Developer's Guide

314

ChatObject.lastErrorId Property

Definition

This property retrieves the id of the last error that occurred in the ChatObject. Each time a method or
property is called on the ChatObject, this value is cleared.

Syntax

ChatObject.lastErrorId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Integer

The id of the last error that occurred.

Interaction Scripter Developer's Guide

315

ChatObject.localId Property

Definition

This property returns the Station Id of the CIC user associated with the chat.

Syntax

CallObject.localId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

localID

When you retrieve this value, a string identifying the Station Id is returned.

Interaction Scripter Developer's Guide

316

ChatObject.localLocation Property

Definition

This property returns the telephone extension of the CIC station participating in a chat.

Syntax

ChatObject.LocalLocation

Usage

Read Yes

Write No

Value Returned

String

The telephone extension of the CIC station participating in a chat is returned as a string.

Interaction Scripter Developer's Guide

317

ChatObject.localName Property

Definition

The LocalName property returns the name of the connected party in a chat object.

Syntax

ChatObject.LocalName

Usage

Read Yes

Write No

Value Returned

String

The name of the chat user.

Interaction Scripter Developer's Guide

318

ChatObject.messages Property

Definition

The messages property of the chatObject returns an array of messages of that chat interaction after the
chatObject had been initialized. The SubObjectChangeHandler can be an assigned callback that gets
alerted with new messages when the chat Interaction receives new messages.

Syntax

function chatInitialized(){

if(chatObject.messages !== undefined)

{ renderChatBox(chatObject.messages); chatObject.SubObjectChangeHandler =
messagesChanged; }

}

function messagesChanged()

{ renderChatBox(chatObject.messages); }

Each message is an object with the following properties:

chatMember.displayName

chatMember.chatMemberType

chatMember.interactionId

chatMember.userId

messageType

text

timestamp

Interaction Scripter Developer's Guide

319

ChatObject.remoteId Property

Definition

This property returns the registered name of the remote chat user.

Syntax

ChatObject.remoteId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

A string value representing the registered name of the remote chat user.

Interaction Scripter Developer's Guide

320

ChatObject.requestedAttributeReturnHandler Callback

Definition

This callback allows a script to asynchronously get a chat attribute by first setting
requestedAttributeReturnHandler and then calling chatObject.getAttribute. The chatObject will trigger
the requestedAttributeReturnHandler handler after it has pulled down the necessary interaction
attribute information from the server.

Compatibility

Use this callback only in scripts for Interaction Connect.

Syntax

ChatObject.requestedAttributeReturnHandler(attributeName, attributeValue);

Input Parameters

Name

The name of a chat object attribute (e.g., ChatID, StationName, Language) or a custom chat
attribute.

Return Values

Value

The value of the requested attribute is returned as a string.

Example

function main()

{

 var chatObject = scripter.createChatObject();

 chatObject.chatObjectInitializedHandler = uponChatObjectInitialization;

 chatObject.id = exampleId;

}

function uponChatObjectInitialization(chatObject)

{

 console.log('printing the chat direction ' + chatObject.direction);

 chatObject.requestedAttributeReturnHandler = uponAttributeReception;

 chatObject.getAttribute('IS_ATTR_EXAMPLE');

}

function uponAttributeReception(attributeName, attributeValue)

{

 console.log('The value of ' + attributeName + ' is ' + attributeValue);

Interaction Scripter Developer's Guide

321

}

Interaction Scripter Developer's Guide

322

ChatObject.remoteLocation Property

Definition

The RemoteLocation property returns the IP address of the chat user.

Syntax

ChatObject.remoteLocation

Usage

Read Yes

Write No

Value Returned

String

A string value representing the IP address of the remote chat user.

Interaction Scripter Developer's Guide

323

ChatObject.remoteName Property

Definition

The ChatObject.remoteName property allows you to retrieve the user name entered by the person who
requested the chat. You can also assign a name.

Syntax

ChatObject.remoteName

Usage

Read Yes

Write Yes

Value Assigned

pVal

Any string value that you wish to assign.

Value Returned

String

The name of the person who requested the chat.

Interaction Scripter Developer's Guide

324

ChatObject.state Property

Definition

ChatObject.state returns the numeric call state> value for a chat object. This value indicates the current
condition of the chat object. To return a string value that describes the state, use the
ChatObject.StateString property.

Syntax

ChatObject.state

Usage

Read Yes

Write No

Value Returned

Integer

The value returned is the call state value for the chat object. Possible values are shown below.

1 ALERTING

2 CONNECTED

3 CLIENT_CONNECT

4 HELD

5 INTERNAL_DISCONNECT

6 EXTERNAL_DISCONNECT

Interaction Scripter Developer's Guide

325

ChatObject.stateString Property

Definition

The StateString property returns or assigns the string value displayed in the State field of a queue (such
as the "My Calls" queue). State strings describes the current condition of a chat object. To return a
numeric value that describes the state, use the ChatObject.state property.

Syntax

ChatObject.stateString

Usage

Read Yes

Write Yes

Value Assigned

String

This string value describes the current condition of the chat. Possible values are:

Alerting

Voicemail

Connected

Disconnected

Initializing

Proceeding

ACD - Connected (Agent XX)

Any User-defined string

Value Returned

String

When the StateString property is read, a string containing the call state is returned.

Interaction Scripter Developer's Guide

326

ConferenceObject

ConferenceObject

The ConferenceObject class manages conference calls. It allows you to begin a conference call, add calls
to the conference, and disconnect parties from the conference. Properties of the ConferenceObject
provide notification, handling, and the ability to enumerate objects in the conference.

Methods

ConferenceObject.add This method adds a call into a conference.

ConferenceObject.create Used to begin a conference call.

ConferenceObject.disconnectParty This method disconnects a party from a conference.

Callbacks

ConferenceObject.errorHandler

Name of the function to be called when an
error occurs.

ConferenceObject.objectDestroyedHandler

Name of the function to be called when
the object is no longer valid. You will not
be able to access anything about the
object after this function is called.

ConferenceObject.objectSpecificChangeHandler

Name of the function to be called when
something changes about an object that is
not generic to all conference objects. You
need to query the object itself to see what
changed.

ConferenceObject.stateChangeHandler

Name of the function to be called when
the call state of object being watched
changes.

ConferenceObject.subObjectChangeHandler

Name of the function to be called when a
subobject changes. This method is used to
monitor queue objects that are made up
of other objects. For example, Conference
objects consist of multiple call objects.

ConferenceObject.conferenceObjectInitializedHandler

This callback is invoked when the
conference object has initialized. It is
compatible with scripts for Interaction
Connect only.

Interaction Scripter Developer's Guide

327

ConferenceObject.conferenceStartedHandler

This callback is invoked when the
conference call has started. It is
compatible with scripts for Interaction
Connect only.

Properties

ConferenceObject.id The ID property assigns or returns the ID of the conference object.

ConferenceObject.lastError

Returns the text of the last error that occurred. This property is
automatically cleared before each method or property call on this
object.

ConferenceObject.lastErrorId

Returns the id of the last error that occurred. This property is
automatically cleared before each method or property call on this
object.

Enumerations

ConferenceObject.startMemberIdsEnum

Returns an enumeration of object ids for each object in
the conference.

Interaction Scripter Developer's Guide

328

ConferenceObject.add Method

Definition

This method adds a call into a conference.

Syntax

ConferenceObject.add(CallObject);

Prototype

ConferenceObject.add(

 [in] CallObject CallObject

)

Input Parameters

CallObject

The call object to add to the conference.

Return Values

None.

Example

function CreateConference() {

 scripter.callObject.dial("5007", false);

 alert("Click OK to dial second number");

 scripter.conferenceObject.create(scripter.callobject);

 var objCall2 = scripter.createCallObject();

 objCall2.dial("555-1212", false);

 alert("Click OK to join conference.");

 scripter.conferenceObject.add(objCall2);

}

Interaction Scripter Developer's Guide

329

ConferenceObject.create Method

Definition

Creates a conference call. This method has 1 or 2 input parameters, depending upon whether the script
will run in Scripter .NET or Interaction Connect. To create a conference in an Interaction Connect script,
two interaction id's must be passed to this method. Scripter .NET requires a single interaction ID to be
passed.

Creating a conference in Interaction Connect scripts

Syntax

conferenceObject.create(callid1, callid2);

Input Parameters

callid1

Interaction ID of the first party in the conference call.

callid2

Interaction ID of the second party in the conference call.

Example

This example assumes the agent is currently on a dialer interaction, and would like to initiate a
conference with their Accounting department by selecting the "Conference Accounting" button.

<input type="button" onclick="conferenceAccounting()">Conference
Accounting</input>

<script>

var callObj1 = scripter.createCallObject();

var callObj2 = scripter.createCallObject();

var confObj = scripter.createConferenceObject();

function conferenceAccounting() {

 // Assign the current dialer interaction to callObj1

 callObj1.id = IS_Attr_CallID.value;

 // Specify a callback to be triggered once the call has successfully
been placed to the Accounting department.

 callObj2.callObjectInitializedHandler = startConference;

 // Place the call to Accounting

 callObj2.dial("1234");

}

function startConference() {

Interaction Scripter Developer's Guide

330

 // Start the conference between the customer and accounting by providing
the interaction id for each of the calls.

 confObj.create(callObj1.id, callObj2.id);

}

</script>

Creating a conference in Scripter .NET scripts

Syntax

ConferenceObject.create(CallObject);

Prototype

ConferenceObject.create(

 [in] CallObject CallObject

)

Input Parameters

CallObject

The call object to create the conference around. If the call object's id is –1, then an empty
conference will be created.

Return Values

None.

Example

function CreateConference()

{

 scripter.callObject.dial("5007", false);

 alert("Click OK to dial second number");

 scripter.conferenceObject.create(scripter.callobject);

 var objCall2 = scripter.createCallObject();

 objCall2.dial("555-1212", false);

 alert("Click OK to join conference.");

 scripter.conferenceObject.add(objCall2);

}

Interaction Scripter Developer's Guide

331

ConferenceObject.disconnectParty Method

Definition

This method disconnects a party from a conference.

Syntax

ConferenceObject.disconnectParty(CallID);

Prototype

ConferenceObject.disconnectParty(

 [in] String CallID

)

Input Parameters

CallID

The call id of the call to disconnect from the conference.

Return Values

None.

Interaction Scripter Developer's Guide

332

ConferenceObject.errorHandler Callback Property

Definition

ConferenceObject.errorHandler is invoked by when an internal error occurs in the conference object. If
you pass the name of a user-defined function to ConferenceObject.errorHandler, the function will be
called when this event occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ConferenceObject.errorHandler();

Usage

Read Yes

Write Yes

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, define the errorId, and errorText as arguments to the
function. e.g.: function foo(errorId, errorText).

Interaction Scripter Developer's Guide

333

ConferenceObject.objectDestroyedHandler Callback Property

Definition

ConferenceObject.objectDestroyedHandler is invoked when the conference object is no longer valid.
You will not be able to access anything about the object after this function is called on the object. If you
pass the name of a user-defined function to ConferenceObject.callobjectDestroyedHandler, the function
will be called when this event occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ConferenceObject.objectDestroyedHandler();

Usage

Read Yes

Write Yes

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user -defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, no special arguments are required. e.g.: function foo().

Interaction Scripter Developer's Guide

334

ConferenceObject.objectSpecificChangeHandler Callback Property

Definition

ConferenceObject.objectSpecificChangeHandler is invoked when something changes about this
conference object that is not generic to all conference objects. You need to query the object itself to see
what changed. If you pass the name of a user-defined function to
ConferenceObject.objectSpecificChangeHandler, the function will be called when this event occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ConferenceObject.objectSpecificChangeHandler();

Usage

Read Yes

Write Yes

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, no special arguments are required. e.g.: function foo().

Interaction Scripter Developer's Guide

335

ConferenceObject.stateChangeHandler Callback Property

Definition

This method is called whenever this object's state changes . If you pass the name of a user-defined
function to ConferenceObject.stateChangeHandler, the function will be called whenever the conference
state changes.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ConferenceObject.stateChangeHandler(StateId, StateString);

StateId

StateID is a number that represents the new call state of the object being watched.

Alerting 1

Connected 105

Dialing 103

Disconnected 106

Initializing 100

ManualDialing 102

Offering 101

OnHold 6

Proceeding 104

StationAudio 107

StateString

StateString is a string that describes the call state.

Interaction Scripter Developer's Guide

336

Initializing
CIC is formatting the telephone number and looking for a line on which
to place the outbound call. This state applies to inbound and outbound
calls.

Offering
The call has been placed in a queue, but the call is not alerting. CIC is
determining if the called party is available to take the call. This state
applies to inbound calls only.

Dialing
CIC is dialing the remote telephone number. This state applies to
outbound calls only.

Proceeding
The call is proceeding through the outside telephone network.
‘Proceeding' is used if a CIC client user has enabled Call Analysis. This
state applies to outbound calls only.

Connected
Both parties are connected and are able to speak with each other. This
state applies to inbound and outbound calls. Connected is the same as
Proceeding.

On Hold The call is on hold. This state applies to inbound and outbound calls.

Disconnected
The call is no longer active. This state applies to inbound and outbound
calls.

Manual
Dialing

A telephone handset has been picked up and a dial tone is being
generated. This state applies to outbound calls.

Station Audio An audio clip is being played to one or more CIC client users.

Alerting
A CIC client user is being notified that he or she has an incoming call.
This state applies to inbound calls.

Voice Mail The caller is leaving a voice mail message.

Variables

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user -defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, you should declare StateID and StateString as arguments.
e.g.: function foo(StateID, StateString).

Interaction Scripter Developer's Guide

337

ConferenceObject.subObjectChangeHandler Callback Property

Definition

This method is called when a sub-object (such as a call in a conference) is affected by an event . If you
pass the name of a user-defined function to ConferenceObject.stateChangeHandler, the function will be
called whenever the call state changes. This method is used to monitor queue objects that are made up
of other objects. For example, a conference object consists of multiple call objects.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

ConferenceObject.subObjectChangeHandler(ChangedAttributes, MemberInteraction)

Parameters

ChangedAttributes

An object containing the specific attributes of the conference member that changed.

MemberInteraction

The interaction object of the conference member that changed.

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, you may define the following arguments in the function.
e.g.: function foo(Type ID, CallID, ChangeID).

Example

The following example assumes a conference has already been started. In the example, the
subObjectCahngedHandler callback assigned to the conference object will log to the browser the
Interaction Id and state of the member interaction as well as each attribute that has changed.

var conferenceMemberChanged = function(changedAttributes, memberInteraction) {

 console.log("Member Interaction Id: ", memberInteraction.interactionId, "Member
state: ", memberInteraction.stateDisplayString);

 changedAttributes.forEach(function(attribute) {

 console.log("Attribute Name: ", attribute.attributeName, "Previous Value: ",
attribute.oldValue, "New Value: ", attribute.newValue);

Interaction Scripter Developer's Guide

338

 }

 }

 scripter.conferenceObject.subObjectChangedHandler = conferenceMemberChanged;

Interaction Scripter Developer's Guide

339

ConferenceObject.conferenceObjectInitializedHandler Callback Property

Definition

This callback is invoked when the conference object has initialized.

Compatibility

This callback is compatible with scripts for Interaction Connect only.

Syntax

ConferenceObject.conferenceObjectInitializedHandler();

Example

This example initializes the conference object by assigning the Interaction ID of an existing conference to
the newly created conference object. A function is assigned to the conferenceObjectInitializedHandler
and gets called once the conference object has initialized.

var conferenceInitializedMessage = function() { console.log("The conference
object has been initialized.") };

var conference = scripter.createConferenceObject();

conference.conferenceObjectInitializedHandler = conferenceInitializedMessage;

conference.id = "1234567890";

Interaction Scripter Developer's Guide

340

ConferenceObject.conferenceStartedHandler Callback Property

Definition

This callback is invoked when the conference call has started.

Compatibility

This callback is compatible with scripts for Interaction Connect only.

Syntax

ConferenceObject.conferenceStartedHandler();

Example

This example starts a conference with the current dialer call and the user at extension "456". Once the
conference has started, the conferenceStartedHandler is invoked.

var callObj1 = scripter.createCallObject();

var callObj2 = scripter.createCallObject();

var confObj = scripter.createConferenceObject();

callObject1.id = IS_Attr_CallID.value;

callObject2.dial("456");

var conferenceStarted = function() { console.log("The conference has
started") };

confObj.conferenceStartedHandler = conferenceStarted;

confObj.create(callObj1.id, callObj2.id);

Interaction Scripter Developer's Guide

341

ConferenceObject.id Property

Definition

The ID property assigns or returns the ID of the conference object.

Syntax

ConferenceObject.Id

Usage

Read Yes

Write Yes

Value Assigned

pVal

A conference object ID, passed as string data.

Value Returned

String

The conference object ID is returned as a string.

Interaction Scripter Developer's Guide

342

ConferenceObject.lastError Property

Definition

This property retrieves the text of the last error that occurred in the ConferenceObject. Each time a
method or property is called on the ConferenceObject, this value is cleared.

Syntax

ConferenceObject.lastError

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The text message of the last error that occurred.

Interaction Scripter Developer's Guide

343

ConferenceObject.lastErrorId Property

Definition

This property retrieves the id of the last error that occurred in the ConferenceObject. Each time a
method or property is called on the ConferenceObject, this value is cleared.

Syntax

ConferenceObject.lastErrorId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Integer

The id of the last error that occurred.

Interaction Scripter Developer's Guide

344

ConferenceObject.startMemberIdsEnum Enumeration Property

Definition

This property returns an enumeration of object ids for each object in the conference. The enumeration
is traversed using the hasMoreElements and nextElement methods of the enumeration. Each call to the
nextElement method returns successive elements of the series. The hasMoreElements method will
return a Boolean true if this enumeration contains more elements.

Syntax

ConferenceObject.startMemberIdsEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Java Enumeration

The enumeration containing the list of ConferenceObjects.

Java Enumeration Example (JavaScript)

var members = ConferenceObject.startMemberIdsEnum;

while (members.hasMoreElements()) {

 var memberId = members.nextElement();

 alert(memberId);

}

Interaction Scripter Developer's Guide

345

Queue object

Queue object

The Queue object connects to CIC call queues, and provides access to properties supported by queue
objects. An additional queue object, >scripter.myQueue is functionally equivalent to scripter.queue,
except that the current user's queue is preattached in the myQueue object.

Methods

Queue.connect This method connects a queue object to a specific CIC queue.

Callbacks

Queue.callObjectAddedHandler

The name of the function to be invoked when a CallObject is
added to the queue. This is different from
Queue.objectAddedHandler in that it only responds to
CallObjects.

Queue.errorHandler

Name of the function to be called when an error occurs in this
object.

Queue.objectAddedHandler

Queue.objectAddedHandler allows you to specify the name of a
procedure that will be called when an object is added to a queue.

Queue.objectChangedHandler

Queue.objectChangedHandler allows you to specify the name of
a procedure that will be called when a queue object is changed.

Queue.objectRemovedHandler

Queue.objectRemovedHandler allows you to specify the name of
a procedure that will be called when an queue object is removed.

Properties

Queue.activeMonitor

This property indicates whether or not someone is actively
monitoring this queue (i.e., you should receive ACD calls).

Queue.lastError

This property returns a string describing an error condition affecting
the queue object.

Queue.lastErrorId

This property returns the number of an error condition affecting the
queue object.

Queue.name Returns the name of a user, workstation, workgroup, or line queue.

Queue.type

Returns an integer identifying the type of queue (station, user,
workstation, or line).

Interaction Scripter Developer's Guide

346

Enumerations

Queue.startCallObjectsEnum

Queue.startCallObjectsEnum returns a new enumeration of
all call objects currently within the queue.

Queue.startChatObjectsEnum

Queue.startChatObjectsEnum returns a new enumeration
of all chat objects currently within the queue.

Queue.startConferenceObjectsEnum

Queue.startConferenceObjectsEnum returns a new
enumeration of all conference objects currently within the
queue.

Queue.startObjectIdsEnum

Queue.startObjectIdsEnum returns a new enumeration of
all objects ids currently within the queue.

Interaction Scripter Developer's Guide

347

Queue.connect Method

Definition

This method connects to a specific CIC queue. Starting in 2018 R3, this method is asynchronous,
meaning that it can accept a single optional callback argument that takes no parameters. In addition,
Queue.connect no longer supports Line Queue as a Type parameter. Scripts for Scripter .NET do not
need to specify a callback, but scripts for Connect must specify it.

Syntax

Queue.connect(Type, Name);

Prototype

Queue.connect(

 [in] int Type,

 [in] string Name

)

Input Parameters

Type

Type is an integer representing a queue type. Valid values for queue types are:

3 Station queue

9 User queue

10 Workgroup queue

Name

The name of the queue that you wish to connect to the queue object.

Return Values

None.

Example

Connect to a queue, using a callback to wait asynchronously for the connection to be made.

// Connect a queue

var queue = scripter.myQueue;

queue.connect(9, 'user1', function() {

 queue.startObjectIdsEnum(function(result) {

 while (result.hasMoreElements()) {

 console.log('Id:', result.nextElement());

 }

Interaction Scripter Developer's Guide

348

 });

});

See also Queue.callObjectAddedHandler.

Interaction Scripter Developer's Guide

349

Queue.callObjectAddedHandler Callback Property

Definition

Queue.callObjectAddedHandler allows you to define a function that executes when a call object is
added to a queue. This method is called only when a call object is added to the monitored queue.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

Queue.callObjectAddedHandler(CallObject)

Parameters

CallObject

The actual call object that was added is passed.

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
Function pointers are used when you wish to change the value of a property. When defining
your custom function, you should define CallObject as the argument to the function. e.g.:
function foo(CallObject).

Example

<html>

<head>

 <title>Scripter Object</title>

 <meta name="IS_System_AgentName">

 <script language="JavaScript">

 var QueueEx = scripter.createQueue();

Interaction Scripter Developer's Guide

350

 function ConnectQueue() {

 QueueEx.connect(QueueType.value, QueueName.value);

 QueueEx.callObjectAddedHandler = CallObjectAdded;

 QueueEx.objectAddedHandler = QueueObjectAdded;

 QueueEx.objectChangedHandler = QueueObjectChanged;

 QueueEx.objectRemovedHandler = QueueObjectRemoved;

 alert("Connection established to Queue: " + QueueEx.name);

 }

 function CallObjectAdded(callobj) {

 alert("call was added to user queue: " + callobj.id);

 }

 function QueueObjectAdded(TypeId, ObjectId) {

 alert("object was added: " + ObjectId + "\n Type: " + TypeId);

 }

 function QueueObjectRemoved(TypeId, ObjectId) {

 alert("object was removed: " + ObjectId + "\n Type: " + TypeId);

 }

 function QueueObjectChanged(TypeId, ObjectId) {

 alert("object was changed: " + ObjectId + "\n Type: " + TypeId);

 }

 </script>

</head>

<body>

 <table>

 <tr>

 <td>

 <input type="button" value="Connect Queue"
onclick="ConnectQueue();"></input>

 </td>

 <td>Queue Name</td>

 <td><input name="QueueName" value="" style="width:100"></input>

 </td>

 <td>Queue Type</td>

Interaction Scripter Developer's Guide

351

 <td><input name="QueueType" value="9" style="width:100"></input>

 </td>

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

352

Queue.errorHandler Callback Property

Definition

Queue.errorHandler is invoked by when an internal error occurs in the Queue object. If you pass the
name of a user-defined function to Queue.errorHandler, the function will be called when this event
occurs. In other words, it is called when an error occurs during the processing of a queue operation. The
HRESULT and the error text are passed as parameters.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client. Do not use this callback in scripts for
Interaction Connect.

Syntax

Queue.errorHandler(errId, ErrText)

Parameters

errId

The HRESULT error number.

ErrText

Textual description of the error.

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user -defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
Function pointers are used when you wish to change the value of a property. When defining
your custom function, you may define the following arguments in the function. e.g.: function
foo(errID, errText).

Example

scripter.myQueue.errorHandler = foo;

function foo(errID, errText); {

 alert("Error " + errID + ":" + errText);

}

Interaction Scripter Developer's Guide

353

Queue.objectAddedHandler Callback Property

Definition

Queue.objectAddedHandler allows you to specify the name of a procedure that will be called when an
object is added to a queue. See queue.callObjectAddedHandler for example code.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

Queue.objectAddedHandler(TypeId, ObjectId)

Parameters

TypeId

An integer representing the type of object that was added to the queue.

2 Call Object

19 Chat Object

ObjectId

The object's identifier.

Value Assigned

Function Pointer

A function pointer is the address in memory where a user->defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
Function pointers are used when you wish to change the value of a property. When defining
your custom function, you should define TypeId and ObjectId as arguments to the function. e.g.:
function foo(TypeId, ObjectId).

Interaction Scripter Developer's Guide

354

Queue.objectChangedHandler Callback Property

Definition

Queue.objectChangedHandler allows you to specify the name of a procedure that will be called when a
queue object changes within the queue.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

Queue.objectChangedHandler(TypeId, ObjectId)

Parameters

TypeId

An integer representing the type of object that changed in the queue.

2 Call Object

19 Chat Object

ObjectId

The object's identifier.

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a function to another function declared within an application. In a
script, the function pointer is simply the name of the function. For example, if your code
contains a function named "foo", the function pointer would also be named "foo". Function
pointers are used when you wish to change the value of a property. When defining your custom
function, you should define TypeId and ObjectId as arguments to the function. e.g.: function
foo(TypeId, ObjectId).

Example

See queue.callObjectAddedHandler for example code.

Interaction Scripter Developer's Guide

355

Queue.objectRemovedHandler Callback Property

Definition

Queue.objectRemovedHandler allows you to specify the name of a procedure that will be called when
an queue object is removed from the queue.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

Queue.objectRemovedHandler(TypeId, ObjectId)

Parameters

TypeId

An integer representing the type of object that was removed from the queue.

2 Call Object

19 Chat Object

ObjectId

The object's identifier.

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a function to another function declared within an application. In a
script, the function pointer is simply the name of the function. For example, if your code
contains a function named "foo", the function pointer would also be named "foo". Function
pointers are used when you wish to change the value of a property.

When defining your custom function, you should define TypeId and ObjectId as arguments to
the function. e.g.: function foo(TypeId, ObjectId).

Example

See queue.callObjectAddedHandler.

Interaction Scripter Developer's Guide

356

Queue.activeMonitor Property

Definition

This property sets / indicates whether or not the queue is actively being monitored.

Syntax

Queue.activeMonitor

Usage

Read Yes

Write Yes

Value Assigned

Boolean

Set this property to True if you are monitoring the queue.

Value Returned

Boolean

Returns True if the queue is actively being monitored; otherwise, returns False.

Interaction Scripter Developer's Guide

357

Queue.lastError Property

Definition

This property retrieves the text of the last error that occurred in the Queue object. Each time a method
or property is called on the Queue object, this value is cleared.

Compatibility

This property is compatible with scripts for Scripter .NET Client. Do not use this property in scripts for
Interaction Connect.

Syntax

Queue.lastError

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Integer

Error message describing the problem with the queue object.

Interaction Scripter Developer's Guide

358

Queue.lastErrorId Property

Definition

This property retrieves the numeric id of the last error that occurred in the Queue object. Each time a
method or property is called on the Queue object, this value is cleared.

Compatibility

This property is compatible with scripts for Scripter .NET Client. Do not use this property in scripts for
Interaction Connect.

Syntax

Queue.lastErrorId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

Numeric error id describing the problem with the queue object.

Interaction Scripter Developer's Guide

359

Queue.name Property

Definition

This property returns the name of a user, workstation, workgroup, or line queue.

Syntax

Queue.name

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

A string containing the name of a station, workgroup, user, or line queue.

Example

See queue.callObjectAddedHandler for example code.

Interaction Scripter Developer's Guide

360

Queue.type Property

Definition

This property returns an integer identifying the type of queue (station, user, workstation, or line).

Syntax

Queue.type

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Integer

Possible return values:

3 Station queue

9 User queue

10 Workgroup queue

15 Line queue

Interaction Scripter Developer's Guide

361

Queue.startCallObjectsEnum Enumeration Property

Definition

This property returns an enumeration of CallObjects for queue. The enumeration is traversed using the
hasMoreElements and nextElement methods of the enumeration. Each call to the nextElement method
returns successive elements of the series. The hasMoreElements method will return a Boolean true if
this enumeration contains more elements.

Starting with 2018 R3, the Queue.startCallObjectsEnum, Queue.startChatObjectsEnum,
Queue.startConferenceObjectsEnum and Queue.startObjectIdsEnum properties now accept an optional
callback (for use with Connect scripts only) whose single parameter contains the result.

Syntax

Queue.startCallObjectsEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Java Enumeration

The enumeration containing the list of CallObjects.

Java Enumeration Example (JavaScript)

// disconnect call objects in the queue

var calls = scripter.myQueue.startCallObjectsEnum;

while (calls.hasMoreElements()) {

 var CallObject = calls.nextElement();

 CallObject.disconnect();

}

Interaction Connect Example

function queue.startObjectIdsEnum(function(result) {

 try {

 var objects = [];

 while (result.hasMoreElements()) {

Interaction Scripter Developer's Guide

362

 objects.push('' + result.nextElement() + '');

 }

 var tdHtml = '' + objects.join('') + '';
 doc.getElementById('queue-ids-td').innerHTML = tdHtml;

 console.log('callback complete.');

 } catch (error) {

 console.log('error in startObjectIdsEnum:', error);

 }

});

Interaction Scripter Developer's Guide

363

Queue.startChatObjectsEnum Enumeration Property

Definition

This property returns an enumeration of ChatObjects for queue. The enumeration is traversed using the
hasMoreElements and nextElement methods of the enumeration. Each call to the nextElement method
returns successive elements of the series. The hasMoreElements method will return a Boolean true if
this enumeration contains more elements.

Starting with 2018 R3, the Queue.startCallObjectsEnum, Queue.startChatObjectsEnum,
Queue.startConferenceObjectsEnum and Queue.startObjectIdsEnum properties now accept an optional
callback (for use with Connect scripts only) whose single parameter contains the result. See Interaction
Connect Example in Queue.startCallObjectsEnum Enumeration Property for an example.

Syntax

Queue.startChatObjectsEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Java Enumeration

The enumeration containing the list of ChatObjects.

Java Enumeration Example (JavaScript)

// disconnect call objects in the queue

var calls = scripter.myQueue.startCallObjectsEnum;

while (calls.hasMoreElements()) {

 var CallObject = calls.nextElement();

 CallObject.disconnect();

}

Interaction Scripter Developer's Guide

364

Queue.startConferenceObjectsEnum Enumeration Property

Definition

This property returns an enumeration of ConferenceObjects for queue. The enumeration is traversed
using the hasMoreElements and nextElement methods of the enumeration. Each call to the nextElement
method returns successive elements of the series. The hasMoreElements method will return a Boolean
True if this enumeration contains more elements.

Starting with 2018 R3, the Queue.startCallObjectsEnum, Queue.startChatObjectsEnum,
Queue.startConferenceObjectsEnum and Queue.startObjectIdsEnum properties now accept an optional
callback (for use with Connect scripts only) whose single parameter contains the result. See Interaction
Connect Example in Queue.startCallObjectsEnum Enumeration Property for an example.

Syntax

Queue.startConferenceObjectsEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Java Enumeration

The enumeration containing the list of ConferenceObjects.

Java Enumeration Example (JavaScript)

// search for conference objects in the queue

var conferences = scripter.myQueue.startConferenceObjectsEnum;

if (conferences.hasMoreElements()) {

 alert("A conference is in the queue.");

}

Interaction Scripter Developer's Guide

365

Queue.startObjectIdsEnum Enumeration Property

Definition

This property returns an enumeration of object ids for all objects in the queue. The enumeration is
traversed using the hasMoreElements and nextElement methods of the enumeration. Each call to the
nextElement method returns successive elements of the series. The hasMoreElements method will
return a Boolean true if this enumeration contains more elements.

Starting with 2018 R3, the Queue.startCallObjectsEnum, Queue.startChatObjectsEnum,
Queue.startConferenceObjectsEnum and Queue.startObjectIdsEnum properties now accept an optional
callback (for use with Connect scripts only) whose single parameter contains the result. See Interaction
Connect Example in Queue.startCallObjectsEnum Enumeration Property for an example.

Syntax

Queue.startObjectIdsEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Java Enumeration

The enumeration contains the list of object ids.

Java Enumeration Example (JavaScript)

var i = 0;

var ObjectIds = new Array();

var objects = scripter.myQueue.startObjectIdsEnum;

while (objects.hasMoreElements()) {

 ObjectIds[i++] = objects.nextElement();

}

Interaction Scripter Developer's Guide

366

User Object

User Object

The User object is used to obtain information about a specific CIC user, such as the list of user, station,
line, and workgroup queues that the user can view and modify, the user's status, logged in state, etc.

Methods

None

Callbacks

User.errorHandler

Name of the script function to be invoked by when an internal
error occurs in the User object.

User.statusChangeHandler

Name of the script function to be called when the agent's status
changes.

User.userChangeHandler

Name of the script function to be called when any of the agent's
configuration attributes changes, except the agent's status.

User.userLoginChangeHandler

Name of the script function to be called when the agent logs in or
out of the system. Login will be true on a login message and false
on a logout message.

Properties

User.canListen Determines if the agent can listen in on calls.

User.canMakePrivate Determines if the agent's calls can be made private.

User.canRecord Determines if the agent can record calls.

User.extension The agent's CIC extension number.

User.id The CIC user name of this agent.

User.isDND Determines if the agent's status is in a Do Not Disturb state.

User.isLoggedIn Determines if the agent is logged in.

User.isOnPhone Determines if the agent is on the phone.

User.lastError

This property returns a string describing an error condition affecting
the User object.

Interaction Scripter Developer's Guide

367

User.lastErrorId

This property returns the number of an error condition affecting the
User object.

User.name The CIC display name of the agent.

User.statusMessage Sets or returns the agent's status indicator (e.g. Available).

User.untilDateTime

The date and time that the agent will return from an unavailable
status condition.

Enumerations

User.startAccessibleQueuesEnum

Returns an enumeration of all accessible queues (e.g.,
user queues or workgroups with queues) the current
agent has rights to view and modify.

User.startAvailableCampaignObjectEnum

Returns an enumeration of campaigns which are
available for agent to logon to.

User.startAvailableStatusMessagesEnum Returns an enumeration of available status messages.

User.startLoggedInStationsEnum

Returns an enumeration of the logged in stations for
this agent.

User.startViewableWorkgroupsEnum

Returns an enumeration of all workgroups the agent
has rights to view.

User.startWorkgroupsEnum

Creates a list of workgroups the current agent is a
member of.

Interaction Scripter Developer's Guide

368

User.errorHandler Callback Property

Definition

User.errorHandler is invoked by when an internal error occurs in the user object. If you pass the name of
a user-defined function to User.errorHandler, the function will be called when this event occurs.

Compatibility

This property is compatible with scripts for Scripter .NET Client. Do not use this property in scripts for
Interaction Connect.

Syntax

User.errorHandler(errId, ErrText)

Parameters

errId

The HRESULT error number.

ErrText

Textual description of the error.

Usage

Read Yes

Write Yes

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, define the errorId, and errorText as arguments to the
function. e.g.: function foo(errorId, errorText).

Value Returned

Function Pointer

Interaction Scripter Developer's Guide

369

User.statusChangeHandler Callback Property

Definition

User.statusChangeHandler is invoked when the agent's status changes. This method is called when the
user's status changes. If you pass the name of a user-defined function to User.statusChangeHandler, the
function will be called when this event occurs.

Usage

Read Yes

Write Yes

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

User.statusChangeHandler(newStatus, untilDateTime)

Parameters

newStatus

The user's status after it changes.

untilDateTime

The date and/or time that the user will return, if set.

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".
When defining your custom function, define newStatus, and untilDateTime as parameters. e.g.:
function foo(newStatus, untilDateTime).

Value Returned

Function Pointer

Interaction Scripter Developer's Guide

370

User.userChangeHandler Callback Property

Definition

User.userChangeHandler is invoked when any of the agent's configuration attributes changes, except
the agent's status. If you pass the name of a user-defined function to User.changeHandler, the function
will be called when this event occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

User.changeHandler

Usage

Read Yes

Write Yes

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".

When defining your custom function, no input parameters are needed. E.g. function foo().

Value Returned

Function Pointer

Interaction Scripter Developer's Guide

371

User.userLoginChangeHandler Callback Property

Definition

User.userLoginChangeHandler is invoked when agent logs in or out of the system. The Login parameter
will be True on a login message and False on a logout message. If you pass the name of a user-defined
function to User.changeHandler, the function will be called when this event occurs.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Usage

Read Yes

Write Yes

Syntax

User.userLoginChangeHandler(station, login)

Parameters

station

The CIC station name.

login

True if the user has logged in, or False if the user has logged out.

Value Assigned

Function Pointer

A function pointer is the address in memory where a user-defined function is loaded. Function
pointers pass the address of a user-defined function to another function declared within an
application. In a script, the function pointer is simply the name of the function. For example, if
your code contains a function named "foo", the function pointer would also be named "foo".

Specify station and login parameters when defining your custom function. E.g. function
foo(station, login).

Value Returned

Function Pointer

Interaction Scripter Developer's Guide

372

User.canListen Property

Definition

Used to determine if the agent can listen in on calls.

Syntax

User.canListen

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the agent's can listen in on calls.

Interaction Scripter Developer's Guide

373

User.canMakePrivate Property

Definition

Used to determine if the current agent's calls can be made private.

Syntax

User.canMakePrivate

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the current agent's calls can be made private.

Interaction Scripter Developer's Guide

374

User.canRecord Property

Definition

Used to determine if the agent can record calls.

Syntax

User.canRecord

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the current agent can record calls.

Interaction Scripter Developer's Guide

375

User.extension Property

Definition

The agent's CIC extension number.

Syntax

User.extension

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The current agent's CIC extension number.

Interaction Scripter Developer's Guide

376

User.id Property

Definition

The CIC User name of this agent.

Syntax

User.Id

Usage

Read Yes

Write Yes

Value Assigned

pVal

A CIC user ID, passed as string data.

Value Returned

String

A CIC user ID, passed as string data.

Interaction Scripter Developer's Guide

377

User.isDND Property

Definition

Used to determine if the agent's status is in a Do Not Disturb state.

Syntax

User.isDND

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the current agent's status is in a DND state.

Interaction Scripter Developer's Guide

378

User.isLoggedIn Property

Definition

Used to determine if the agent is logged in.

Syntax

User.isLoggedIn

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the current agent is logged in.

Interaction Scripter Developer's Guide

379

User.isOnPhone Property

Definition

Used to determine if the agent is on the phone.

Syntax

User.isOnPhone

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Boolean

Returns True if the current agent is on the phone.

Interaction Scripter Developer's Guide

380

User.lastError Property

Definition

This property retrieves the text of the last error that occurred in the User object. Each time a method or
property is called on the User object, this value is cleared.

Compatibility

This property is compatible with scripts for Scripter .NET Client. Do not use this property in scripts for
Interaction Connect.

Syntax

User.lastError

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

The text message of the last error that occurred.

Interaction Scripter Developer's Guide

381

User.lastErrorId Property

Definition

This property retrieves the numeric ID of the last error that occurred in the User object. Each time a
method or property is called on the User object, this value is cleared.

Compatibility

This property is compatible with scripts for Scripter .NET Client. Do not use this property in scripts for
Interaction Connect.

Syntax

User.lastErrorId

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Integer

The numeric ID of the last error that occurred.

Interaction Scripter Developer's Guide

382

User.name Property

Definition

The CIC display name of the agent.

Syntax

User.name

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

String

This string contains the agent's display name.

Interaction Scripter Developer's Guide

383

User.statusMessage Property

Definition

This property returns the agent's status indicator (e.g. Available).

Syntax

User.statusMessage

Usage

Read Yes

Write No

Value Assigned

String

The user's status:

• ACD - Agent Not Answering
• At a Training Session
• At Lunch
• At Play
• Available
• Available, No ACD (Person is available for all non-ACD calls.)
• Available, Remote (Person is available on a Remote Client)
• Away From Desk
• Do Not Disturb
• Follow Up
• Gone Home
• In a meeting
• On Vacation
• Out of the Office
• Out of Town
• Working at Home

These status codes are standard with CIC. To be valid, a status code must be defined within the
CIC system.

Value Returned

String

The string contains the agent's user status.

Interaction Scripter Developer's Guide

384

User.untilDateTime Property

Definition

Gets or sets the date and time that the agent will return from an unavailable status condition.

Syntax

User.untilDateTime

Usage

Read Yes

Write Yes

Value Assigned

Date

A VARIANT date object representing the date-time for the unavailable status condition.

Value Returned

Date

A VARIANT date object representing the date-time for the unavailable status condition.

Interaction Scripter Developer's Guide

385

User.startAccessibleQueuesEnum Enumeration Property

Definition

This property returns an enumeration of accessible queues that current agent has rights to view and
modify. The enumeration is traversed using the hasMoreElements and nextElement methods of the
enumeration. Each call to the nextElement method returns successive elements of the series. The
hasMoreElements method will return a Boolean true if this enumeration contains more elements.

Starting with 2018 R3, this property accepts an optional callback (for use with Connect scripts only)
whose single parameter contains the result. See Interaction Connect Example in
Queue.startCallObjectsEnum Enumeration Property for a related example that shows how a user-
defined callback is used.

Syntax

Queue.startAccessibleQueuesEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Enumeration

The enumeration contains the list of accessable queues.

Java Enumeration Example (JavaScript)

// show all accessible queues for this user

var queues = scripter.myUser.startAccessibleQueuesEnum;

while (queues.hasMoreElements()) {

 alert(queues.nextElement());

}

Interaction Scripter Developer's Guide

386

User.startAvailableCampaignObjectEnum Property

Definition

This property returns an enumeration of campaigns which are available for agent to logon to or out of.
The enumeration is traversed using the hasMoreElements and nextElement methods of the
enumeration. Each call to the nextElement method returns successive elements of the series.

The hasMoreElements method will return a Boolean true if this enumeration contains more elements.
note: only campaings that the agent has view permission granted will be returned by this enumeration.

This enumeration will only return campaigns that are available to the user, and campaigns that the user
has been granted view permission on.

Syntax

User.startAvailableCampaignObjectEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Enumeration

The enumeration contains a list of campaign objects.

Java Enumeration Example (JavaScript)

// show all available campaigns and their status.

var campaigns = scripter.myUser.startAvailableCampaignObjectEnum;

while (campaigns.hasMoreElements()) {

 var campaign = campaigns.nextElement();

 alert(campaign.campaignName);

 alert(campaign.campaignStateString);

}

Interaction Scripter Developer's Guide

387

User.startAvailableStatusMessagesEnum Enumeration Property

Definition

This property returns an enumeration of available status messages. The enumeration is traversed using
the hasMoreElements and nextElement methods of the enumeration. Each call to the nextElement
method returns successive elements of the series. The hasMoreElements method will return a Boolean
true if this enumeration contains more elements.

Syntax

Queue.startAvailableStatusMessagesEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Enumeration

The enumeration containing the list of available status messages.

Java Enumeration Example (JavaScript)

<html>

<head>

<script language="javascript">

 // populate the <select> element with all valid statuses

 var Myenum = scripter.myUser.startAvailableStatusMessagesEnum;

 while (Myenum.hasMoreElements()) {

 StatusList.add(new Option(Myenum.nextElement));

 }

</script>

</head>

<body>

 <table>

 <tr>

 <td><select id="StatusList"></select></td>

Interaction Scripter Developer's Guide

388

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

389

User.startLoggedInStationsEnum Enumeration Property

Definition

This property returns an enumeration of logged in stations for the current agent. The enumeration is
traversed using the hasMoreElements and nextElement methods of the enumeration. Each call to the
nextElement method returns successive elements of the series. The hasMoreElements method will
return a Boolean true if this enumeration contains more elements.

Syntax

Queue.startLoggedInStationsEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Java Enumeration

The enumeration contains the list of logged-in stations.

Java Enumeration Example (JavaScript)

// show all logged-in stations for this user

var stations = scripter.myUser.startLoggedInStationsEnum;

while (stations.hasMoreElements()) {

 alert(stations.nextElement());

}

Interaction Scripter Developer's Guide

390

User.startViewableWorkgroupsEnum Enumeration Property

Definition

This property returns an enumeration of viewable workgroups (workgroups the agent has rights to view)
for the current agent The enumeration is traversed using the hasMoreElements and nextElement
methods of the enumeration. Each call to the nextElement method returns successive elements of the
series. The hasMoreElements method will return a Boolean true if this enumeration contains more
elements.

Starting with 2018 R3, this property accepts an optional callback (for use with Connect scripts only)
whose single parameter contains the result. See Interaction Connect Example in
Queue.startCallObjectsEnum Enumeration Property for a related example that shows how a user-
defined callback is used.

Syntax

Queue.startViewableWorkgroupsEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Java Enumeration

The enumeration contains the list of viewable workgroups.

Java Enumeration Example (JavaScript)

// show all workgroups this user is permitted to view

var workgroups = scripter.myUser.startViewableWorkgroupsEnum;

while (workgroups.hasMoreElements()) {

 alert(workgroups.nextElement());

}

Interaction Scripter Developer's Guide

391

User.startWorkgroupsEnum Enumeration Property

Definition

This property returns an enumeration of workgroups for which the agent is a member of. The
enumeration is traversed using the hasMoreElements and nextElement methods of the enumeration.
Each call to the nextElement method returns successive elements of the series. The hasMoreElements
method will return a Boolean true if this enumeration contains more elements.

Syntax

Queue.startWorkgroupsEnum

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Java Enumeration

The enumeration contains the list of member workgroups.

Java Enumeration Example (JavaScript)

// show all workgroups this user is permitted to view

var workgroups = scripter.myUser.startViewableWorkgroupsEnum;

while (workgroups.hasMoreElements()) {

 alert(workgroups.nextElement());

}

Interaction Scripter Developer's Guide

392

dialer object

dialer object

Definition

The dialer object encapsulates properties of the agent's session with Dialer and properties such as which
campaigns the agent is active in.

Methods

dialer.endBreak

Ends a break so that the agent will receive
campaign calls.

dialer.requestBreak

This method requests a break. Dialer will
automatically grant the break when its predictive
algorithm determines that enough agents are
available to process calls without this agent.

dialer.sendCustomHandlerNotification

Initiates custom handlers through the custom
notification initiator.

dialer.subscribeToCustomHandlerNotification

This hook allows a custom script to asynchronously
subscribe and listen to a Send custom notification
step in a custom handler.

Callbacks

campaignLoginHandler

This handler is invoked when agents are logged into a campaign by an
administrator.

campaignLogoutHandler This handler is invoked when agents log out of a campaign.

breakRequestedHandler This handler is invoked whenever the agent requests a break.

breakGrantedHandler This handler is invoked whenever a break request is granted.

breakEndedHandler This handler is invoked whenever a break ends.

campaignsChangedHandler

This handler is invoked whenever a user is logged into or out of a
campaign.

Properties

breakStatus

This property returns the agent's break status (On Break, Break Pending,
Not on Break).

Interaction Scripter Developer's Guide

393

campaigns This property returns an array of campaigns that the agent is active in.

Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Dialer Object Demo Page</title>

 <script src="http://code.jquery.com/jquery-1.9.1.js"></script>

 <script language="javascript">

 // This is a sample script utilizing the dialer object in an
autoloaded page.

 $(document).ready(function() {

 init();

 });

 function init() {

 // Add a handler to pick up changes to the campaigns list. (new
campaings being logged into, or out of)

 scripter.dialer.campaignsChangedHandler = handleDialerChange;

 InitTagValues()

 }

 function InitTagValues() {

 $("#tagAgentId").html(scripter.myUser.name);

 $("#tagServerId").html(scripter.notifierName);

 $("#tagFirstCampaignName").html(scripter.dialer.firstCampaignName
);

 $("#tagCampaignEnum").html(fillCampaignList());

 $("#tagDialerCampaigns").text(scripter.dialer.Campaigns);

 $("#tagBreakStatus").html(evalBreakEnum(scripter.dialer.breakStat
us));

 $("#RequestBreakBtn").click(

 function() {

 scripter.dialer.requestBreak();

Interaction Scripter Developer's Guide

394

 });

 $("#EndBreakBtn").click(

 function() {

 scripter.dialer.endBreak();

 });

 $("#RefreshBtn").click(

 function() {

 window.location = "http://localhost/script.htm";

 }

);

 scripter.dialer.breakRequestedHandler = HandleBreakChange;

 scripter.dialer.breakGrantedHandler = HandleBreakChange;

 scripter.dialer.breakEndedHandler = HandleBreakChange;

 scripter.dialer.campaignLoginHandler = handleLogInChange;

 scripter.dialer.campaignLogoutHandler = handleLogoutChange;

 }

 function HandleBreakChange() {

 $("#tagBreakStatus").html(evalBreakEnum(scripter.dialer.breakStat
us));

 }

 function handleDialerChange() {

 InitTagValues();

 }

 function handleLogoutChange(campaignName) {

 alert(campaignName);

 InitTagValues()

 }

 function handleLogInChange(campaignName) {

 alert(campaignName);

 InitTagValues();

 }

 function evalBreakEnum(e) {

 switch (e) {

Interaction Scripter Developer's Guide

395

 case 0:

 return "Not On Break";

 break;

 case 1:

 return "Break Pending";

 break;

 case 2:

 return "On Break";

 break;

 case 3:

 return "Not Logged Into a Campaign";

 break;

 }

 }

 function fillCampaignList() {

 var campaigns = scripter.myUser.startAvailableCampaignObjectEnum;

 var campaignList = '';

 while (campaigns.hasMoreElements()) {

 var campaign = campaigns.nextElement();

 campaignList += campaign.campaignName + ',';

 }

 return campaignList;

 }

 </script>

</head>

<body>

 <button id="RefreshBtn">Text</button>

 <table border="1" cellpadding="5">

 <tr>

 <td>Agent ID</td>

 <td></td>

 </tr>

 <tr>

 <td>scripter.notifierName</td>

Interaction Scripter Developer's Guide

396

 <td></td>

 </tr>

 <tr>

 <td>scripter.dialer.firstCampaignName</td>

 <td></td>

 </tr>

 <tr>

 <td>scripter.myUser.startAvailableCampaignObjectEnum</td>

 <td></td>

 </tr>

 <tr>

 <td>scripter.dialer.Campaigns;</td>

 <td></td>

 </tr>

 <tr>

 <td>scripter.dialer.breakStatus</td>

 <td></td>

 </tr>

 <tr>

 <td><button id="RequestBreakBtn">request break</button></td>

 <td><button id="EndBreakBtn">end break</button></td>

 </tr>

 </table>

</body>

</html>

Interaction Scripter Developer's Guide

397

dialer.endBreak Method

Definition

Ends a break so that the agent will receive campaign calls.

Syntax

dialer.endBreak();

Prototype

dialer.endBreak()

Input Parameters

None.

Example

$("#RequestBreakBtn").click(

 function() {

 scripter.dialer.endBreak();

 }

);

Interaction Scripter Developer's Guide

398

dialer.requestBreak Method

Definition

This method requests a break. Dialer will authomatically grant the break when its predictive algorithm
determines that enough agents are available to process calls without this agent.

Syntax

dialer.requestBreak ();

Prototype

dialer.requestBreak()

Input Parameters

None.

Example

$("#RequestBreakBtn").click(

 function() {

 scripter.dialer.requestBreak();

 }

);

Interaction Scripter Developer's Guide

399

dialer.sendCustomHandlerNotification Method

Definition

This method allows a custom script to initiate custom handlers through the custom notification initiator.
Use with care. Starting a very complex, long-running handler could potentially affect the performance of
a PureConnect server.

Input Parameters

ObjectId

The Object Id defined in the handler's initiator.

EventId

The Notification Event defined in the handler's initiator.

dataArray

All other data is passed by an array of string values.

Value Returned

There is no return value. This call takes place asynchronously.

Example

The example calls the sendCustomHandlerNotification method from a static dialer object.

var dataArray = ['someInformation', 'moreInfo', 'lastInfo'];

scripter.dialer.sendCustomHandlerNotification('sampleObjectID',
'sampleEventID', dataArray);

The sampleObjectID and sampleEventID should correspond to the Object ID and Notification Event
properties defined in the initiator that the user wants to initiate. All other user defined data can be
passed as an array of strings(eg: dataArray).

NOTE: A custom script can also subscribe to a custom handler notification to listen for responses
after initiating the custom handler. See dialer.subscribeToCustomHandlerNotification Method.

Interaction Scripter Developer's Guide

400

dialer.subscribeToCustomHandlerNotification Method

Definition

This hook allows a custom script to asynchronously subscribe and listen to a Send custom notification
step in a custom handler. To do this, call the subscribeToCustomHandlerNotification method from a
static dialer object.

Input Parameters

headers

The scripter has to define the header containing the objectID, eventID pairs that they want to
subscribe to. For example:

var headers = [

 { "objectId": "CompletePurchaseObjectID", "eventId":
"CompletePurchaseEventID" },

 { "objectId": "NextTransactionObjectID", "eventId":
"NextTransactionEventID" }

];

responseCallBackHandler

This is a user-defined function that is called upon the reception of a notification from the
custom handler. This function accepts three parameters: objectId, eventId and data. For
example:

function executeWhenHandlerResponds(objectId, eventId, data)

{ console.log('ObjectID returned was: '+ objectId);
console.log('EventID returned was: '+ eventId);
console.log('DataReturned was '+ data); }

The user can parse the data object returned as they wish. However, they should be able to
anticipate the type of data the notification contains which requires knowledge of the custom
handler's steps.

Value Returned

There is no return value.

NOTE: Upon subscription to the SendCustomNotification step, a script may initiate custom handlers
through the sendCustomHandlerNotification from the static dialer object. See
dialer.sendCustomHandlerNotification Method.

Interaction Scripter Developer's Guide

401

dialer.campaignLoginHandler Callback Property

Definition

dialer.campaignLoginHander is invoked when agents are logged into a campaign by an administrator.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

dialer.campaignLoginHandler (campaignName)

Parameters

campaignName

The name of the campaign the agent was logged into.

Example

scripter.dialer.campaignLoginHandler = handleLogInChange;

function handleLogInChange(campaignName) {

 alert(campaignName);

}

Interaction Scripter Developer's Guide

402

dialer.campaignLogoutHandler Callback Property

Definition

dialer.campaignLogoutHander is invoked when agents log out of a campaign.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

Dialer.campaignLogoutHandler (campaignName)

Parameters

campaignName

The name of the campaign the agent was logged out of.

Example

scripter.dialer.campaignLogoutHandler = handleLogoutChange;

function handleLogoutChange(campaignName) {

 alert(campaignName);

}

Interaction Scripter Developer's Guide

403

dialer.breakRequestedHandler Callback Property

Definition

dialer.breakRequestedHandler is invoked whenever the agent requests a break.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

dialer.breakRequestedHandler ()

Parameters

None

Example

scripter.dialer.breakRequestedHandler = HandleBreakChange;

function HandleBreakChange() {

 alert(scripter.dialer.breakStatus));

}

Interaction Scripter Developer's Guide

404

dialer.breakGrantedHandler Callback Property

Definition

dialer.breakGrantedHandler is invoked whenever a break request is granted.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

dialer.breakGrantedHandler ()

Parameters

None.

Interaction Scripter Developer's Guide

405

dialer.breakEndedHandler Callback Property

Definition

dialer.breakEndedHandler is invoked whenever a break ends.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

dialer.breakEndedHandler ()

Parameters

None.

Interaction Scripter Developer's Guide

406

campaignsChangedHandler Callback Property

Definition

dialer.campaignsChangedHandler is invoked whenever a user is logged into or out of a campaign.

Compatibility

This callback is compatible with scripts for Scripter .NET Client or Interaction Connect.

Syntax

dialer.campaignsChangedHandler ()

Parameters

None.

Example

See also: dialer object sample script

scripter.dialer.campaignsChangedHandler = handleDialerChange;

function handleDialerChange() {

 InitTagValues();

}

Interaction Scripter Developer's Guide

407

dialer.breakStatus Property

Definition

This property returns the agent's break status (On Break, Break Pending, Not on Break).

Syntax

dialer.breakStatus

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

breakStatus

Possible return values:

0 NotOnBreak

1 BreakPending

2 OnBreak

3 NotLoggedIn

Example

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Dialer Object Demo Page</title>

 <script src="http://code.jquery.com/jquery-1.9.1.js"></script>

 <script language="javascript">

 $(document).ready(function() {

 init();

 });

 function init() {

 $("#tagBreakStatus").html(evalBreakEnum(scripter.dialer.breakStat
us));

 }

Interaction Scripter Developer's Guide

408

 function evalBreakEnum(e) {

 switch (e) {

 case 0:

 return "Not On Break";

 break;

 case 1:

 return "Break Pending";

 break;

 case 2:

 return "On Break";

 break;

 case 3:

 return "Not Logged Into a Campaign";

 break;

 }

 }

 </script>

</head>

<body>

</body>

</html>

Interaction Scripter Developer's Guide

409

dialer.campaigns Property

Definition

This property returns an array of campaigns that the agent is active in.

Syntax

dialer.campaigns

Usage

Read Yes

Write No

Value Assigned

None.

Value Returned

Campaigns

JavaScript array of campaign name strings.

Example

$("#tagDialerCampaigns").text(scripter.dialer.Campaigns);

Interaction Scripter Developer's Guide

410

Script Examples

Script Examples

This section discusses commonly scripted programming tasks in Advanced Interaction Scripter,
including:

• Agent Breaks

• Blended Campaigns

• Blind Transfer

• Conference Calls

• Consult Transfer

• Consult Transfer with Disposition

• Get and Set attributes

• Inbound Waiting for Call Page

• Play Digits to a Call

• Preview Campaigns

• Supporting Finishing Agents

• Transferring Calls

• User Queue Watcher Script

• Workgroup Queue Watcher Script

Interaction Scripter Developer's Guide

411

Agent Breaks

Agent Breaks

Typically, it is desirable to allow agents to take a break through their script. A simple way to do this is to
give the agent a button to request the break and react accordingly when the break is granted. The
following Scripter functions will be used:

• IS_Action_RequestBreak

• IS_Action_EndBreak

• IS_Action_ClientStatus

• IS_Event_BreakGranted

By clicking on a button, an agent might request a break. However, the break is not necessarily granted
immediately. If there are not enough available agents to handle the calls already dialed or if the agent
has not yet dispositioned the current call, then Dialer will not grant the break immediately.

When Dialer grants the break, it fires an event. We must write a function to handle this break-granted
event. When the agent goes on break we should change their status to an unavailable status. In
addition, we might choose to do various other tasks such as providing an ‘End Break' button or providing
a break timer. Because the break-granted event might not be fired immediately, we must be aware of
when it could potentially be fired. Breaks are always granted immediately after a disposition. The
following are appropriate pages on which to handle the break-granted event:

• Any page that dispositions a call.

• The call waiting page.

The script should allow an agent to easily return from break. When returning from break, the script
should return the agent to the available agents pool for Dialer, set the agent status to available, and
display the call waiting page (typically where the agent's status is set to available). Once the break cycle
is completed, the agent returns to producing results through the running campaigns.

Interaction Scripter Developer's Guide

412

Break Process Flowcharts

Interaction Scripter Developer's Guide

413

Break Process Pseudocode

Break request

When a 'break request' button is pressed:

 Send a break request

End function

Break-granted event

When the break is granted:

 Set the agent's status to unavailable

 Go to the designated break page

End function

Return from break

When agent ends the break:

 Return the agent to the Dialer available agents pool

 Go to the call-waiting page

End function

Interaction Scripter Developer's Guide

414

Break Process JavaScript

Break request

function RequestBreak() {

 // Send a break request

 IS_Action_RequestBreak.click();

}

Break-granted event

function IS_Event_BreakGranted() {

 // Set the agent's status to unavailable

 IS_Action_ClientStatus.statuskey = 'On Break';

 IS_Action_ClientStatus.click();

 // Goto the designated break page

 location.href = 'break.htm';

}

Remember that the break-granted event should appear on any page in which a break might be granted -
- regardless where it was requested. This includes:

• Any page that dispositions a call

• The call waiting page

Return from break

function EndBreak() {

 // Return the agent to the Dialer available agents pool

 IS_Action_EndBreak.click();

 // Goto the call-waiting page. This page will also set the agent status
to available

 location.href = 'index.htm';

}

Interaction Scripter Developer's Guide

415

Blended Campaigns

Blended Campaigns

When scripting blended campaigns, there will be multiple scripts. One script will handle inbound calls,
but a separate script will handle the Dialer generated calls. The inbound script will not be launched by
logging into a campaign. Rather the inbound script will either be launched manually or through an
Interaction Scripter command line parameter. Use the /autologin switch to tell Interaction Scripter
which script to launch at run time (as opposed to login time). /autologin may be used multiple times in
one target path to launch multiple scripts.

Because the inbound script will not be working with Dialer generated calls, the IS_Actions will not allow
for call control. Instead, the scripter object allows for manipulation of non-dialer calls, as well as queue
management. The following Scripter functions will be used:

• scripter.MyQueue.objectAddedHandler

• scripter.CallObject.getAttribute

• scripter.CallObject.pickup

• scripter.CallObject.disconnect

When the inbound script loads, the scripter.MyQueue.objectAddedHandler function must be initialized.
Simply assign the function to run when an object is added to "MyQueue" (from the perspective of the
agent). In addition, two parameters are passed to the objectAddedHandler:

• TypeId - a numeric identifier of the type of object that entered the queue

• ObjectId - the unique id of the object

Once an object comes into the agent's queue, determine if that object is an inbound call. An ObjectId of
2 indicates that the object is an inbound call. Assign that object id to the scripter call object. This
assignment will be valid throughout the lifespan of that scripter object.

Certainly, a script should not be associated with a family call or a lunch invitation from a coworker. In
fact, the same script might not be associated for all work calls. If the object is an inbound call, then we
need a mechanism by which to determine whether to associate a script with that call. This will be done
by looking at a custom call attribute or through selective workgroup membership, similar to what was
done for a finishing agent. In this way, a different script can be popped according to the specific
workgroup or some other attribute linked to the call.

Once a decision has been made about which script to pop, but prior to actually moving to that script, it
is important to reset the object added handler. Do so by setting its value to null. The conclusion of the
inbound script should return to this decision making page. At that time, the object added handler will be
reinitialized. If the script should not continue with this call, then reset the scripter call object's id. Set it
to -1 to designate that it is not currently assigned to any call object. As the script continues, remember
to use scripter call object functions, not IS_Action functions, to work with the interaction. In addition,
recognize that there is not a Dialer record explicitly associated with this call. Therefore, any IS_Attr
functions will not be available for database functions.

Be careful. It is possible to handle inbound and outbound calls through the same script. However, for
the script to handle the Dialer generated outbound calls, it must be launched through the campaign
login mechanism. Consequently, the script will be closed when the campaign is logged off or stops.

Interaction Scripter Developer's Guide

416

Logging off or stopping a campaign would terminate the script, thus it could no longer handle inbound
calls.

Interaction Scripter Developer's Guide

417

Blended Campaign Flowcharts

Interaction Scripter Developer's Guide

418

Blended Campaign Pseudocode

Initialize object added handler:

When the script loads:

 Run the ObjectAdded function when an object is added to the agent queue.

End function

Handle incoming call:

When an object is added to the agent queue:

 If the object is a call object:

 Assign object id to this scripter object

 If the call object is associated with the Dialer workgroup:

 Reset the object added handler

 Launch the inbound call script

 If the call object is not associated with the Dialer workgroup:

 Release the object

End function

Interaction Scripter Developer's Guide

419

Blended Campaign JavaScript

Initialize object added handler

window.onload = Init;

function Init() {

 // queue.objectAddedHandler specifies a procedure to // be called when an
object is added to a queue

 // syntax: Queue.objectAddedHandler(TypeId,ObjectId)

 scripter.myQueue.objectAddedHandler = ObjectAdded;

}

Handle incoming call

// Object added handler function: object type and object

// id are passed implicitly

function ObjectAdded(ObjType, ObjId) {

 // ObjType == 2 are call objects

 if (ObjType == 2) {

 // Assign id of the added object to this object

 // This assignment will persist for the duration

 // of the script interaction.

 scripter.callObject.id = ObjId;

 var objCall = scripter.createCallObject();

 objCall.id = ObjId;

 // EIC_Workgroup - legacy naming. Attributes often start with EIC_

 var workgroup = objCall.getAttribute("EIC_Workgroup");

 // Workgroup queue name is case sensitive.

 // If object is assigned to VOYAGE workgroup

 if (workgroup == "Workgroup Queue:VOYAGE") {

 // Reset the object added handler

 scripter.myQueue.ObjectAddedHandler = null;

 // Launch inbound call script

 location.href = "inboundopen.htm";

 } else {

 // If interaction is not a VOYAGE call

Interaction Scripter Developer's Guide

420

 // release the call object

 scripter.callObject.id = -1;

 }

 }

}

Interaction Scripter Developer's Guide

421

Blind Transfer

The script below demonstrates how to perform a blind transfer using the scripter advanced API.

<html>

<head>

 <title>Blind Transfer Example</title>

 <script type="text/javascript" defer>

 function BlindTransfer(RemoteNumber1, RemoteNumber2) {

 // call party 1

 scripter.callObject.dial(RemoteNumber1, false);

 var doConnect = window.confirm("Blind transfer to party 2?");

 if (!doConnect) {

 scripter.callObject.disconnect();

 return;

 }

 // make the transfer

 scripter.callObject.blindTransfer(RemoteNumber2);

 }

 </script>

</head>

<body>

<p>Party 1 <input id=RemNum1> Party 2 <input id=RemNum2></p>

<p><input type=button value="Blind Transfer"
onclick=BlindTransfer(RemNum1.value,RemNum2.value)></p>

</body>

</html>

Interaction Scripter Developer's Guide

422

Conference Calls

Conference Calls

Conference calls allow many parties to participate in an interaction simultaneously. This is useful when it
is necessary to connect multiple agents to an interaction or pull a supervisor into a conversation.
Creating and managing a conference call in Scripter is surprisingly simple. The following Scripter
functions will be used:

• scripter.conferenceObject.create

• scripter.conferenceObject.add

• scripter.callObject.dial

• scripter.callObject.disconnect

As with any interaction, knowing the CallID opens up many possibilities. Building conference calls is no
different. It is simply a matter of adding objects, by their CallID, to a conference call object. Likewise, it is
important to manage CallIDs by resetting them, simply by assigning their value to -1, before creating
new conference or call objects. If a conference has not already been created then that will be the first
step. After that, create a call object by dialing a party and then use the CallID of that object to add it to a
conference. The scripter.conferenceObject.add method will add already created call objects to a
conference.

In the example javascript code provided, the conference create and add processes are included in the
same function. Use a global boolean variable to make a decision whether a new conference must be
created.

Interaction Scripter Developer's Guide

423

Conference Call Process Flowchart

Interaction Scripter Developer's Guide

424

Conference Call Process Pseudocode

Global flag to indicate whether this is a new or existing conference

When add to conference button is pressed:

 If this is a new conference

 Assign the Dialer call to the scripter call object

 Reset any existing conference object

 Create the conference with the Dialer call

 Set flag to indicate conference created

 Reset the scripter call object

 Dial the third party

 Prompt to transfer

 If no:

 Disconnect third party

 End function

 Add third party to conference call

End function

Interaction Scripter Developer's Guide

425

Conference Call Process Javascript

Conference Call Process Javascript

There are several Javascript examples of the Conference Call Process:

• Conference Call Process Javascript

• Create Conference Call and add parties

• Conference with Third Party

• Conference with Third Party then Locally Disconnect

• Call Third Party, Create Conference, then Disconnect Agent

Interaction Scripter Developer's Guide

426

Conference Call Process JavaScript

// Global flag to indicate whether this is a new or existing conference

var CreatedConference = 0;

function AddToConference(p_RemoteNum) {

 // If this is a new conference

 if (CreatedConference == 0) {

 // Assign the Dialer call to the scripter call object

 scripter.callObject.id = IS_Attr_CallID.value;

 // Reset any existing conference object

 scripter.conferenceObject.id = -1

 // Create the conference with the Dialer call

 scripter.conferenceObject.create(scripter.callObject);

 // Set flag to indicate conference created

 CreatedConference = 1;

 }

 // Reset the scripter call object

 scripter.callObject.id = -1;

 // Dial the third party

 scripter.callObject.dial(p_RemoteNum, false);

 // Prompt to transfer

 var doConnect = window.confirm("Add party to conference?");

 // If no then disconnect third party and end function

 if (!doConnect) {

 alert("Disconnecting");

Interaction Scripter Developer's Guide

427

 scripter.callObject.disconnect();

 return;

 // Add third party to conference call}

 scripter.conferenceObject.add(scripter.callObject);

 }

}

Interaction Scripter Developer's Guide

428

Create Conference Call and add parties

The JavaScript below demonstrates how to create a conference call and add parties to the conference
call.

<html>

<head>

 <title>Conference Example</title>

 <script type="text/javascript" defer>

 function AddToConference(RemoteNumber) {

 // contact the specified party

 // this will automatically put current call on hold

 scripter.callObject.id = -1;

 scripter.callObject.dial(RemoteNumber, false);

 var doConnect = window.confirm("Add party to conference?");

 if (doConnect != "yes") {

 // do not add the party to the conference

 scripter.callObject.disconnect();

 return;

 }

 // create or add to a conference

 if (scripter.conferenceObject.id == 0xffffffff) {

 scripter.conferenceObject.create(scripter.callObject);

 } else {

 scripter.conferenceObject.add(scripter.callObject);

 }

 }

 </script>

</head>

<body>

 <p><input type=button value="Add to Conference"
onclick=AddToConference(RemNum.value)>

 <input id=RemNum></p>

</body>

</html>

Interaction Scripter Developer's Guide

429

Conference with Third Party

The JavaScript function below demonstrates how an agent can call a third party, consult with that
third. Then bring the third party in with the customer and the agent. Then once the verification process
is complete, disconnect the third party, and continue with the call with the customer and the agent.

function ConferenceWithThirdParty(p_Number) {

 // create a callobject

 var p_mCallObj = scripter.createCallObject();

 // create a conference object

 var p_ConferenceObject = scripter.createConferenceObject();

 var iRes1 = confirm("Would you like to call the 3rd party?");

 // user selected OK, so let's call the 3rd party

 if (iRes1) {

 p_mCallObj.dial(p_Number, false);

 var iRes2 = confirm("Press OK when you are ready to conference in the
3rd party");

 // conference in the third party

 if (iRes2) {

 scripter.callObject.id = IS_ATTR_Callid.value;

 // create the conference object

 // add 3rd party

 p_ConferenceObject.Create(p_mCallObj);

 // pick up the call, it is probably on hold

 scripter.callObject.pickup();

 // add scripter call

Interaction Scripter Developer's Guide

430

 p_ConferenceObject.add(scripter.callObject);

 // pickup 3rd party just in case

 p_mCallObj.pickup();

 var iRes3 = confirm("Press OK when you are ready to disconnect
the third party call");

 if (iRes3) {

 DisconnectCallInConference(p_ConferenceObject.id, p_Number);

 }

 } else {

 // they did not want to transfer, so lets disconnect the 3rd
party call and

 // pick up the original call

 // disconnect 3rd party call

 p_mCallObj.disconnect();

 // pick up original call

 scripter.callObject.id = IS_ATTR_Callid.value;

 scripter.callObject.pickup();

 }

 }

}

/**

* This method is a utility function that will be used to disconnect a
specific leg

of the *conference call where the RemoteTn(Number Dialed)

* is equal to the number passed in.

* @param pConferenceID - id of the conference to search

* @param pDialedNumber - number dialed that needs to be disconnected

* @Author Customer Care

*/

function DisconnectCallInConference(pConferenceID, pDialedNumber) {

 // create conference object

 var ConfObj = scripter.createConferenceObject();

Interaction Scripter Developer's Guide

431

 // set id of the conference object to the one created when the conference
was created

 ConfObj.id = pConferenceID;

 // get handle to enumerator for collection

 var _enum = ConfObj.startMemberIdsEnum;

 // enumerate conference object collection

 while (_enum.hasMoreElements()) {

 // grab id of call object

 var callObjId = _enum.nextElement();

 // create call object

 var callObj = scripter.createCallObject();

 // assign id to call object

 callObj.id = callObjId;

 // check the remoteTn value of the call, if equal then that is the
call to disconnect

 if (callObj.getAttribute('Eic_RemoteTn') == pDialedNumber) {

 ConfObj.disconnectParty(callObj.id);

 }

 }

}

Interaction Scripter Developer's Guide

432

Conference with Third Party then Locally Disconnect

The JaveScript function below demonstrates how an agent can call a third party, consult with that
third. Then bring the third party in with the customer and the agent, then take themselves out of the
conference, this way the third party is talking with the customer and the agent is free to take other calls.

function ConferenceWithThirdPartyLocalDisconnect(p_Number) {

 var p_mCallObj = scripter.createCallObject();

 var p_ConferenceObject = scripter.createConferenceObject();

 var iRes1 = confirm("Would you like to call the 3rd party?");

 // user selected OK, so let's call the 3rd party

 if (iRes1) {

 p_mCallObj.dial(p_Number, false);

 var iRes2 = confirm("Press OK when you are ready to conference in the
3rd party");

 // conference in the third party

 if (iRes2) {

 scripter.callObject.id = IS_ATTR_Callid.value;

 // create the conference object

 // add 3rd party

 p_ConferenceObject.Create(p_mCallObj);

 // pick up the call, it is probably on hold

 scripter.callObject.pickup();

 // add scripter call

 p_ConferenceObject.add(scripter.callObject);

 // pickup 3rd party just in case

 p_mCallObj.pickup();

 var iRes3 = confirm("Press OK when you are ready to disconnect
from this call");

 if (iRes3) {

 scripter.callObject.disconnect();

 }

Interaction Scripter Developer's Guide

433

 } else {

 // they did not want to transfer, so lets disconnect the 3rd
party call and pick up the original call

 // disconnect 3rd party call

 p_mCallObj.disconnect();

 // pick up original call

 scripter.callObject.id = IS_ATTR_Callid.value;

 scripter.callObject.pickup();

 }

 }

}

Interaction Scripter Developer's Guide

434

Call Third Party, Create Conference, then Disconnect Agent

The JavaScript function below demonstrates how to call a third party, then create a conference with the
customer and the third party, then disconnect the agent leg of the call while dispositioning the call
before the transfer and letting the agent be ready for another call. The key in this function is to
disposition before transfer to avoid the scripter warning that a call was removed from the users’ queue
without being completed.

/*

This utility function will return the call object that connects the current
user

to the specified conference

* @param conferenceId - The id of a conference the current user is a part of

* @return - The call object that is the user's leg of the conference, or null
if

the call leg could not be found

*/

function FindConferenceLeg(conferenceId) {

 var callObjects = scripter.myQueue.startCallObjectsEnum;

 while (callObjects.hasMoreElements()) {

 var callObject = callObjects.nextElement();

 if (callObject.conferenceId != conferenceId) {

 continue;

 }

 if (callObject.state != 105) {

 continue;

 }

 return callObject;

 }

 return null;

}

/*

This utility function will disconnect the current user from a specified
conference,

leaving the other parties in the conference connected.

* @param conferenceObject - A conference object the current user is a part of

*/

function DisconnectFromConference(conferenceObject) {

Interaction Scripter Developer's Guide

435

 var conferenceLeg = FindConferenceLeg(conferenceObject.id);

 if (conferenceLeg != null) {

 conferenceObject.disconnectParty(conferenceLeg.id);

 }

}

/**

This method takes care of performing a consult transfer and dispositioning
the call before transfer

* @param p_Number - the number to dial for the 3rd party

* @param p_WrapupCode – the wrap-up code to use when dispositioning the call

* @param p_Page - the page to navigate to when done with the call

*/

function Conference3rdPartyTransferWithDisposition(p_Number, p_WrapupCode,
p_page) {

 var p_mCallObj = scripter.createCallObject();

 var p_ConferenceObject = scripter.createConferenceObject();

 var iRes1 = confirm("Would you like to call the 3rd party?");

 // user selected OK, so let's call the 3rd party

 if (iRes1) {

 p_mCallObj.dial(p_Number, false);

 var iRes2 = confirm("Press OK when you are ready to conference in the
3rd party");

 // conference in the third party

 if (iRes2) {

 scripter.callObject.id = IS_ATTR_Callid.value;

 // create the conference object

 // add 3rd party

 p_ConferenceObject.Create(p_mCallObj);

 // pick up the call, it is probably on hold

 scripter.callObject.pickup();

 // add scripter call

 p_ConferenceObject.add(scripter.callObject);

 //pickup 3rd party just in case

 p_mCallObj.pickup();

Interaction Scripter Developer's Guide

436

 var iRes3 = confirm("Press OK when you are ready to disconnect
from this call");

 if (iRes3) {

 // issue the disposition

 // since it is ok to transfer the call, disposition it before
the transfer

 IS_Action_CallComplete.wrapupcode = p_WrapupCode;

 IS_Action_CallComplete.click();

 // disconnect from the conference

 DisconnectFromConference(p_ConferenceObject);

 // if we have a page parameter, then use it

 if (p_page != null)

 location.href = p_page;

 }

 } else {

 // they did not want to transfer, so lets disconnect the 3rd
party call and pick up the original call

 // disconnect 3rd party call

 p_mCallObj.disconnect();

 // pick up original call

 scripter.callObject.id = IS_ATTR_Callid.value;

 scripter.callObject.pickup();

 }

 }

}

Interaction Scripter Developer's Guide

437

Consult Transfer

The JavaScript below demonstrates how to perform a consult transfer.

<html>

<head>

 <title>Consult Transfer Example</title>

 <script type="text/javascript" defer>

 function ConsultTransfer(RemoteNumber1, RemoteNumber2) {

 // call party 1

 var callObject1 = scripter.createCallObject();

 callObject1.dial(RemoteNumber1, false);

 var doConnect = window.confirm("Call party 2?");

 if (!doConnect) {

 callObject1.disconnect();

 return;

 }

 // call party 2

 // this automatically puts party 1 on hold

 var callObject2 = scripter.createCallObject();

 callObject2.dial(RemoteNumber2, false);

 var doTransfer = window.confirm("Transfer party 1 to party 2?");

 if (!doTransfer) {

 callObject2.disconnect();

 return;

 }

 // make the transfer

 callObject1.consultTransfer(callObject2.id);

 // free objects

 callObject1.id = -1;

 callObject2.id = -1;

 }

 </script>

Interaction Scripter Developer's Guide

438

</head>

<body>

 <p>Party 1 <input id=RemNum1> Party 2 <input id=RemNum2></p>

 <p><input type=button value="Consult Transfer"
onclick=ConsultTransfer(RemNum1.value,RemNum2.value)></p>

</body>

</html>

Interaction Scripter Developer's Guide

439

Consult Transfer with Disposition

The JavaScript function below demonstrates how to consult transfer the customer to a third party while
dispositioning the call before the transfer and letting the agent be ready for another call. The key in this
function is to disposition before transfer to avoid the scripter warning that a call was removed from the
user's queue without being completed.

/**

This method takes care of performing a consult transfer and dispositioning
the call before transfer

* @param p_Number - the number to dial for the 3rd party

* @param p_WrapupCode – the wrap-up code to use when dispositioning the call

*/

function ConsultTransferWithDisposition(p_Number, p_WrapupCode) {

 var p_mCallObj = scripter.createCallObject();

 var iRes1 = confirm("Would you like to call the 3rd party?");

 // user selected OK, so let's call the 3rd party

 if (iRes1){

 p_mCallObj.dial(p_Number, false);

 //set up the consult transfer

 IS_Action_Transfer.consult = true;

 //set up the recipient call object

 IS_Action_Transfer.recipient = p_mCallObj.id;

 var iRes2 = confirm("Press OK when you are ready to transfer the
call");

 // Transfer call to third party

 if (iRes2) {

 // since it is ok to transfer the call, disposition it before
the transfer

 IS_Action_CallComplete.wrapupcode = p_WrapupCode;

 IS_Action_CallComplete.click();

 scripter.callObject.id = IS_ATTR_Callid.value;

 // pick up the call, it is probably on hold

Interaction Scripter Developer's Guide

440

 scripter.callObject.pickup();

 // now execute the consult transfer that has been set
up

 IS_Action_Transfer.click();

 }

 else {

 // they did not want to transfer, so lets disconnect the 3rd
party call and pick up the original call

 // disconnect 3rd party call

 p_mCallObj.disconnect();

 // pick up original call

 scripter.callObject.id = IS_ATTR_Callid.value;

 scripter.callObject.pickup();

 }

 }

 }

}

Interaction Scripter Developer's Guide

441

Get and Set attributes

The functions below demonstrate how to set and get call attributes from a call that is on the user's
queue while logged into Scripter. It also demonstrates how useful the IS_Action_Trace function is.

/*

This method will return the value of a given call attribute

* @param p_sAttributeName

* @Author PureConnect Customer Care

*/

function getCallAttr(p_sAttributeName) {

 var CallObj = scripter.createCallObject();

 var attrValue = "";

 CallObj.id = IS_ATTR_Callid.value;

 if (CallObj.id != -1) {

 attrValue = CallObj.getAttribute(p_sAttributeName);

 IS_TraceNote('Callid: ' + CallObj.id + ' Getting Attr: ' +
p_sAttributeName +

 "=" + attrValue);

 return attrValue;

 }

 else {

 IS_TraceError('Could not get valid call object');

 return attrValue;

 }

}

/*

This method will set the value of a given call attribute

* @param p_sAttributeName

* @param p_sAttributeValue

* @Author PureConnect Customer Care

*/

function setCallAttr(p_sAttributeName, p_sAttributeValue) {

 var CallObj = scripter.createCallObject();

 var attrValue = "";

 CallObj.id = IS_ATTR_Callid.value;

 if (CallObj.id != -1) {

Interaction Scripter Developer's Guide

442

 IS_TraceNote('Callid: ' + CallObj.id + ' Setting Attr: ' +
p_sAttributeName + "=" + p_sAttributeValue);

 CallObj.setAttribute(p_sAttributeName, p_sAttributeValue);

 }

 else {

 IS_TraceError('Could not get valid call object');

 }

}

/*

 * This method will bring send custom trace messages to the Scripter vwrlog

 * @Author PureConnect Customer Care
*/

function IS_TraceNote(p_message) {

 IS_Action_Trace.message = p_message;

 IS_Action_Trace.level = 3; // 3= Notes level

 IS_Action_Trace.click();

}

function IS_TraceError(p_message) {

 IS_Action_Trace.message = p_message;

 IS_Action_Trace.level = 0; //0 = Error level

 IS_Action_Trace.click();

}

Interaction Scripter Developer's Guide

443

Inbound Waiting For Call Page

This JavaScript code demonstrates how to set up a waiting for call page for an inbound workgroup. It
also demonstrates how a single page can handle calls from different inbound workgroups.

<html>

<head>

 <title>Wait for Call</title>

 <meta name=IS_Action_SetForeground>

 <meta name=IS_Action_SelectPage>

 <script type="text/javascript" defer>

 scripter.myQueue.objectAddedHandler = ObjectAdded;

 function ObjectAdded(ObjType, ObjId) {

 // we only want to look at call objects (type 2)

 if (2 == ObjType) {

 scripter.callObject.id = ObjId;

 var workgroup =
scripter.callObject.getAttribute("EIC_AssignedWorkgroup") + "";

 // adding an empty string guarantees a string

 if ("" == workgroup) {

 // legacy support

 workgroup =
scripter.callObject.getAttribute("AssignedWorkgroup") + "";

 // adding an empty string guarantees a string

 }

 // compare case insensitive

 switch (workgroup.toLowerCase()) {

 //depending on the workgroup name we pop the appropriate
page

 case "sales":

 window.location.href =
"http://server/campaigns/sales";

 break;

 case "marketing":

 window.location.href =
"http://server/campaigns/marketing";

Interaction Scripter Developer's Guide

444

 break;

 default:

 // this is not a call from a workgroup that we care
about

 break;

 }

 }

 }

 </script>

</head><body>

 <p>Wait for Call</p>

</body>

</html>

Interaction Scripter Developer's Guide

445

Play Digits To a Call

The script below demonstrates how to play digits to a call from within Scripter and a web page.

function PlayDigitsToCall(p_CallID, p_DigitsToPlay) {

 var p_Call = scripter.CreateCallObject();

 p_Call.Id = p_CallID;

 p_Call.playDigits(p_DigitsToPlay);

 p_Call = null;

}

Interaction Scripter Developer's Guide

446

Preview Campaigns

Preview Campaigns

Preview campaigns allow agents to view contact data prior to actually dialing the call. In addition,
preview campaigns dial exactly one call per agent and without any call analysis. So, the call will never be
abandoned. To setup a campaign to be a preview campaign, simply select Preview from the Calling
Mode drop-down list in the campaign configuration. While developing a script to support these
campaigns, the following Scripter functions will be used:

• IS_Event_PreviewDataPop

• IS_Action_PlacePreviewCall

• IS_Action_SkipPreviewCall

Optionally, the IS_Event_NewPreviewCall may be used.

IS_Event_PreviewDataPop

This event signifies that a new contact record is ready to be dialed. The contact data is available and
further actions is required to either dial the call (IS_Action_PlacePreviewCall) or skip dialing the contact
(IS_Action_SkipPreviewCall).

IS_Event_NewPreviewCall

This event signifies that a preview call is presented to the agent. This is not the data pop. Rather this
function indicates that the IS_Action_PlacePreviewCall action was issued. The primary idea behind a
preview call is that the agent has the opportunity to learn some details about a contact before the call is
placed. Accordingly, when a contact record is received, the script should display information about that
record to the agent. This will be done by opening another page that will use IS_Attr commands to
display information on the screen.

After viewing the information, an agent would typically click a button to call that contact. The
IS_Action_PlacePreviewCall function will place a preview call to the phone number in the sole contact
field associated with that campaign. Later, we will discuss dialing alternate phone numbers.

Alternatively, the script might automatically dial a contact without agent intervention. After the
information displays for a set time, Dialer would automatically dial the contact. Implement this with the
javascript setTimeout(command, timeout_ms) function. It might also be desirable to include an option
to skip dialing a record. This would allow the agent to be selective about which records should be dialed.
The ‘skip call' button is optional.

Interaction Scripter Developer's Guide

447

Preview Process Flowchart

Interaction Scripter Developer's Guide

448

Preview Process Pseudocode

Preview data pop

When a preview call record pops:

 Goto the preview pop page

End function

Preview call placement

When the page loads:

 Populate the page with call record data

End function

When a 'place call' button is pressed:

 Place the preview call

End function

When a 'skip call' button is pressed:

 Skip this call record

 Return to call waiting page

End function

Interaction Scripter Developer's Guide

449

Preview Process JavaScript

Preview data pop

function IS_Event_PreviewDataPop(p_names, p_values) {

 // display preview data pop

 page location.href = "previewpop.htm";

}

Preview call placement

window.onload = Init;

function Init() {

 // Populate page with call record data

 tagLName.innertext = IS_Attr_LName;

}

function PlacePreviewCall() {

 // Place the preview call

 IS_Action_PlacePreviewCall.click();

}

function SkipPreviewCall() {

 // Skip this call record

 IS_Action_SkipPreviewCall.click();

 // Return to call waiting page

 location.href = "index.htm";

}

Interaction Scripter Developer's Guide

450

Supporting Finishing Agents

In many call centers, the agents that make first contact with a called party are not the agents that
ultimately finish the call. Another agent might provide any variety of back-end services from confirming
details or getting billing information to performing a satisfaction survey or upselling product. This closer
is called a finishing agent. While standard agents are the first agents to handle a Dialer call, finishing
agents only receive transferred calls. Likewise, scripting support for finishing agents is different from
that for standard agents.

Only one script may be linked to a campaign. Consequently, the same script is popped to the standard
agents and the finishing agents. It is either up to the agent or to the script developer to display the
features appropriate to each agent type. Certainly it would be preferable for the script developer to
automate this task.

The following Scripter functions will be used:

• IS_Action_MarkCallForFinishing

• IS_Action_Transfer

• scripter.CallObject.getAttribute

When the time comes for a standard agent to transfer a call to a finishing agent, it is important to mark
the call for finishing. Use the IS_Action_MarkCallForFinishing action to accomplish this requirement.
Doing so serves two purposes:

• Indicate that the call should only be given to an agent that is logged in as a finishing agent.

• Temporarily write any data associate with the call record, so that it is available to the finishing
agent.

When the finishing agent receives that call, the script should detect that this is the back-end of the call
and pop an appropriate script. This can be done by setting (and subsequently checking) a custom call
attribute.

Related Topics

Transferring Calls

IS_Action_WriteData

IS_Event_QueueObjectRemoved

Interaction Scripter Developer's Guide

451

Transferring Calls

Transferring Calls

Often, an agent might need to transfer a call. This could be a transfer to a finishing agent, a supervisor,
or to another agent. In addition, consider whether the agent should be able to contact the third party
prior to transferring. If the call should immediately be transferred to the third party, without
notification, we call it a blind transfer. If the agent contacts the third party prior to transferring, we call it
a consult transfer.

Blind Transfers

For the blind transfer, the IS_Action_Transfer Scripter function will be used. The IS_Action_Transfer
action requires two attributes:

recipient

The extension of phone number of recipient of the transfer.

consult

A flag to designate whether this is a consult transfer action. To perform a blind transfer, simply provide
the third-party phone number and execute the transfer.

Consult Transfers

In the case of the consult transfer, these additional Scripter functions will be used:

• IS_Action_Hold

• IS_Action_Pickup

• IS_Action_Disconnect

• scripter.CreateCallObject

• scripter.CallObject.dial

• scripter.CallObject.pickup

• scripter.CallObject.disconnect

When performing a consult transfer, the scripter object will be used to create another call object. This
will represent the phone call to the third-party prior to transferring. The script will create the second call
and then tear it down when the initial call is actually transferred. The phone number may be a fixed
value or may be a field entered by the agent.

Interaction Scripter Developer's Guide

452

Transfer Process Flowcharts

Interaction Scripter Developer's Guide

453

Transfer Process Pseudocode

Blind transfer:

When a ‘blind transfer' button is pressed:

 Send a break request

End function

Consult transfer:

When the break is granted:

 Set the agent's status to unavailable

 Goto the designated break page

End function

Interaction Scripter Developer's Guide

454

Transfer Process JavaScript

Blind Transfer:

function BlindTransfer(p_RecipentPhNum) {

 // Assign the recipient phone number

 IS_Action_Transfer.recipient = p_RecipentPhNum;

 // Designate that this is not a consult transfer

 IS_Action_Transfer.consult = false;

 // Apply the transfer

 IS_Action_Transfer.click();

}

Consult transfer:

function ConsultTransfer(p_Number) {

 // Create a new scripter call object

 var p_mCallObj = scripter.createCallObject();

 // Prompt the agent to call the recipient

 var iRes1 = confirm("Would you like to call the 3rd party?");

 // user selected OK, so let's call the 3rd party

 if (iRes1) {

 // Dial the recipient

 p_mCallObj.dial(p_Number, false);

 // set up the consult transfer

Interaction Scripter Developer's Guide

455

 IS_Action_Transfer.consult = true;

 // set up the recipient call object to match the person just
consulted

 IS_Action_Transfer.recipient = p_mCallObj.id;

 // prompt the agent to transfer

 var iRes2 = confirm("Press OK when you are ready to transfer the
call");

 // Transfer call to third party

 if (iRes2) {

 scripter.callObject.id = IS_ATTR_CallID.value;

 // pick up the call, it is probably on hold

 scripter.callObject.pickup();

 // now execute the consult transfer that has been set up

 IS_Action_Transfer.click();

 } else {

 // they did not want to transfer, so lets disconnect the 3rd
party

 //call and pick up the original call

 //disconnect 3rd party call

 p_mCallObj.disconnect();

 // pick up original call

 scripter.callObject.id = IS_ATTR_CallID.value;

 scripter.callObject.pickup();

 }

 }

}

Interaction Scripter Developer's Guide

456

User Queue Watcher Script

This JavaScript demonstrates how to use the advanced scripting API to set up a queue watcher for the
logged in user, and watch for object added and state change events.

// Queue Watcher for user queue

scripter.myQueue.objectChangedHandler = CallObjectChanged;

scripter.myQueue.objectRemovedHandler = CallObjectRemoved;

scripter.myQueue.callObjectAddedHandler = CallObjectAdded;

// global call object

var mg_callObj = scripter.createCallObject();

// function called when call object is added to UserQueue

function CallObjectAdded(p_CallObject) {

 mg_callObj = p_CallObject;

}

function ObjectAdded(p_Type, p_ObjId) {

 if (p_Type == 2)

 // only interested in call objects

 {

 mg_callObj.id = p_ObjId;

 }

}

function CallObjectChanged(p_Type, p_ObjId) {

 // will fire whenever object changes state

 if (p_Type == 2) //only interested in call objects

 {

 mg_callObj.id = p_ObjId;

 }

}

function CallObjectRemoved(p_Type, p_ObjId) {

 // will fire when object has been destroyed, which is usually two minutes
after disconnect.

 if (p_Type == 2)

Interaction Scripter Developer's Guide

457

 //only interested in call objects

 {

 mg_callObj.id = p_ObjId;

 }

}

Interaction Scripter Developer's Guide

458

Workgroup Queue Watcher Script

The JavaScript below demonstrates how to set up a workgroup watcher within Scripter for watching
objects being added and changed in a workgroup.

function ConnectToQueue(p_QueueName) {

 g_CustomQueue = scripter.createQueue();

 // valid queue types are

 // 3 station queue

 // 9 user queue

 // 10 workgroup queue

 // 15 line queue

 g_CustomQueue.connect(10, p_QueueName);

 g_CustomQueue.callObjectAddedHandler = callObjectAdded;

 g_CustomQueue.objectChangedHandler = callObjectChanged;

 g_CustomQueue.objectRemovedHandler = callObjectRemoved;

 alert("Connected to Queue" + p_QueueName);

}

function callObjectAdded(p_Call) {

 alert(p_Call.id + " has been added to the queue");

}

function callObjectChanged(p_Type, p_ID) {

 //only concerned with call objects

 if (p_Type == 2) {

 alert(p_ID + " has changed state");

 }

}

function callObjectRemoved(p_Type, p_ID) {

 //only concerned with call objects

 if (p_Type == 2) {

 alert(p_ID + "has been removed from queue");

Interaction Scripter Developer's Guide

459

 }

}

Interaction Scripter Developer's Guide

460

Frequently Asked Questions

Frequently Asked Questions

When does my script need to set an agent's status?

What functions or objects are reserved by Interaction Scripter?

Why is the META tag used?

How is information sent back to the database?

What actually resets and removes script variables after a call has been completed?

Is there a way to make variables persistent across all sessions (tabs)?

Does Scripter support multiple call sessions?

Can I run a web-based application within Scripter?

What limitations does Scripter have regarding its browsing capabilities?

Can an application on one tab send information to, or trigger events on another tab?

What methods change focus between tabs?

Is JavaScript case-sensitive?

Does Interaction Scripter support frames?

Does Scripter provide a debugger?

Interaction Scripter Developer's Guide

461

When does my script need to set an agent's status?

When designing scripts, it is helpful to know which statuses Dialer automatically assigns versus statuses
that a custom script needs to explicitly assign. Dialer automatically put agents into the following
statuses:

Status Automatically assigned by Dialer when

Awaiting Callback
When an agent-owned scheduled callback or precisely dialed call is
being placed for them.

Follow Up When their current call disconnects before it is dispositioned.

Campaign Call When the agent is assigned a Dialer call and receives the screen-pop.

A custom script should manually assign a status in the following scenarios:

Status When to assign in a custom script

'Available'
When the agent completes a call and needs to go back available to
receive another call. This is typically done on page load on the
'Waiting for call' page.

On a Break (or whatever
non-ACD status a customer
chooses)

Whenever a break is granted by Dialer.

Interaction Scripter Developer's Guide

462

What functions or objects are reserved by Interaction Scripter?

Any function or object that begins with the "name" IS_ is reserved by the Interaction Scripter. Scripter
currently uses this naming convention with various types of objects:

IS_Attr_

Attr stands for "attribute". An attribute is a piece of information about an object that travels
with an object throughout CIC. An example of an attribute of an object might be the name of
the targeted party called. Any Dialer database attribute beginning with IS_Attr_ will
automatically become associated with a script object of the same name. If the attribute is first
declared in the script, it will go back to the Dialer server during a call complete function, and it
can be accessed from a handler. IS_ATTR_ variables are persistent, and are reserved by
Interaction Scripter. These values are prepopulated by columns of the same name in a database
(less the IS_Attr_ part) under the "value" member for <input> and <meta> elements, and under
the "innerText" member for block elements (elements with closing tags like <p></p>). Any
other members that you attach to these elements (i.e. IS_Attr_Foo.bar) are also global. Don't try
and attach objects that go out of scope as they will be invalid on the next page (i.e.
IS_Attr_Foo.bar = this).

IS_Action_

Dialer Actions can be performed only on campaign calls. Dialer Actions are also useful in preview
mode, when information about a party is pushed to an agent before the agent initiates the call.

IS_Event_

Events are script callback functions. Events are notification messages from the server, such as
new call on a queue. All Dialer Events are functions that you declare, and call when an event
occurs.

IS_System_

System elements retrieve information about an agent, such as the agent's name, or ID, and also
retrieve available status messages from the server.

Interaction Scripter Developer's Guide

463

Why is the META tag used?

You may be wondering why some variables are "declared" with a "meta" tag. The meta tag is used for
elements that need not be displayed in the HTML page. Since <meta> elements are nonvisual, no special
tricks are needed to hide meta elements from the visual part of the document.

One exception is the IS_CommandToolbar_Visible meta tag. It allows a script to control whether or not
the command toolbar is visible. To display the toolbar, include this meta tag in the head section of a
page:

<meta name="IS_CommandToolbar_Visible" content="true">

To hide the toolbar:

<meta name="IS_CommandToolbar_Visible" content="false">

Interaction Scripter Developer's Guide

464

How is information sent back to the database?

When declared within the handlers and changed in the Scripter, tagged information is mapped and
updated in the database as follows:

All variables named IS_Attr_ are sent to the server for update to the database. Any variables that do not
have a corresponding database column are discarded at the time of update. If the client needs
additional information from another database, we recommend that the client query it from an Active
Server or Cold Fusion server rather than delaying the primary data pop to the client.

Interaction Scripter Developer's Guide

465

What actually resets and removes script variables after a call has been completed?

Nothing. It is entirely possible to pollute one call with data from the previous. Using only variables from
the database, they will be overwritten each time a call is received. Any IS_Attr_ variables that your page
defines must be managed and cleared manually.

Interaction Scripter Developer's Guide

466

Is there a way to make variables persistent across all sessions (tabs)?

No. It might be possible to do this with an ActiveX addin control, but no such support is currently built
in, nor planned.

Interaction Scripter Developer's Guide

467

Does Scripter support multiple call sessions?

No. Interaction Scripter does not support multiple sessions with a common username or station name. It
does not allow multiple calls to be open at the same time.

Interaction Scripter Developer's Guide

468

Can I run a web-based application within Scripter?

Yes. You can run a web-based application (such as Cold Fusion) within Interaction Scripter (on a separate
tab) while the agent is running a script for a campaign. Think of these non-campaign pages as regular
browser pages with global variables and no security. However, if you allow these pages to browse the
web, users might download dangerous content.

Interaction Scripter Developer's Guide

469

What limitations does Scripter have regarding its browsing capabilities?

Only practical limitations apply to the maximum number of sessions. For example, having 100 tabs open
makes it quite difficult to find the tab of interest.

Interaction Scripter Developer's Guide

470

Can an application on one tab send information to, or trigger events on another tab?

Cross page functionality is not currently supported or planned for the product, except for
IS_Action_Logon that opens an outbound script tab.

Interaction Scripter Developer's Guide

471

What methods change focus between tabs?

Use the "IS_Action_SetForground" method to set focus to the application. A specific page can be
brought to the foreground using the "IS_Action_SelectPage" method. And of course, clicking on a tab
gives it focus.

Interaction Scripter Developer's Guide

472

Is JavaScript case-sensitive?

Yes. When you define an identifier in JavaScript, the name of the identifier is case-sensitive. For
example, if you define:

<meta name=IS_Action_foo>

then you must call it using

IS_Action_foo.click();

Likewise, if you define:

<meta name=IS_Action_FoO>

then you must call it using:

IS_Action_FoO.click();

Interaction Scripter Developer's Guide

473

Does Interaction Scripter support frames?

Interaction Scripter does not directly support frames. Frames can be used, so long as functions in child
frame windows call objects and functions in the top-level window. Scripter only recognizes objects and
functions in the top-level window. These objects and functions in the top-level window must call down
through the object model to the child windows. This requires a working knowledge of the well-
documented Internet Explorer Document Object Model, and is entirely the responsibility of the end
user.

If frames are used, script developers should give each frame a name using the name attribute of the
frame or iframe element. This allows Interaction Scripter to identify events that are specific to the
frames, which can result in improved performance.

Interaction Scripter Developer's Guide

474

Does Scripter provide a debugger?

Yes. Interaction Scripter offers a debugging feature that helps developers detect and resolve problems
with custom campaign scripts. The debugger is available only when Interaction Scripter is started with a
/debug command-line parameter. The syntax is: interactionscripter.exe /debug.

For more information, see Interaction Scripter Debugger

Interaction Scripter Developer's Guide

475

Copyright and Trademark Information

Copyright and Trademark Information

Interaction Dialer and Interaction Scripter are registered trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2000-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Messaging Interaction Center and MIC are trademarks of Genesys Telecommunications Laboratories,
Inc. The foregoing products are ©2001-2017 Genesys Telecommunications Laboratories, Inc. All rights
reserved.

Interaction Director is a registered trademark of Genesys Telecommunications Laboratories, Inc. e-FAQ
Knowledge Manager and Interaction Marquee are trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2002-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Interaction Conference is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2004-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction SIP Proxy and Interaction EasyScripter are trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2005-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Interaction Gateway is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Media Server is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2006-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Desktop is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2007-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Process Automation, Deliberately Innovative, Interaction Feedback, and Interaction SIP
Station are registered trademarks of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2009-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Analyzer is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Web Portal and IPA are trademarks of Genesys Telecommunications Laboratories, Inc. The
foregoing products are ©2010-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Spotability is a trademark of Genesys Telecommunications Laboratories, Inc. ©2011-2017. All rights
reserved.

Interaction Edge, CaaS Quick Spin, Interactive Intelligence Marketplace, Interaction SIP Bridge, and
Interaction Mobilizer are registered trademarks of Genesys Telecommunications Laboratories, Inc.
Interactive Intelligence Communications as a Service℠ and Interactive Intelligence CaaS℠ are trademarks
or service marks of Genesys Telecommunications Laboratories, Inc. The foregoing products are ©2012-
2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Speech Recognition and Interaction Quality Manager are registered trademarks of Genesys
Telecommunications Laboratories, Inc. Bay Bridge Decisions and Interaction Script Builder are
trademarks of Genesys Telecommunications Laboratories, Inc. The foregoing products are ©2013-2017
Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Scripter Developer's Guide

476

Interaction Collector is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Decisions is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2013-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interactive Intelligence Bridge Server and Interaction Connect are trademarks of Genesys
Telecommunications Laboratories, Inc. The foregoing products are ©2014-2017 Genesys
Telecommunications Laboratories, Inc. All rights reserved.

The veryPDF product is ©2000-2017 veryPDF, Inc. All rights reserved.

This product includes software licensed under the Common Development and Distribution License
(6/24/2009). We hereby agree to indemnify the Initial Developer and every Contributor of the software
licensed under the Common Development and Distribution License (6/24/2009) for any liability incurred
by the Initial Developer or such Contributor as a result of any such terms we offer. The source code for
the included software may be found at http://wpflocalization.codeplex.com.

A database is incorporated in this software which is derived from a database licensed from Hexasoft
Development Sdn. Bhd. ("HDSB"). All software and technologies used by HDSB are the properties of
HDSB or its software suppliers and are protected by Malaysian and international copyright laws. No
warranty is provided that the Databases are free of defects, or fit for a particular purpose. HDSB shall
not be liable for any damages suffered by the Licensee or any third party resulting from use of the
Databases.

Other brand and/or product names referenced in this document are the trademarks or registered
trademarks of their respective companies.

DISCLAIMER

GENESYS TELECOMMUNICATIONS LABORATORIES (GENESYS) HAS NO RESPONSIBILITY UNDER
WARRANTY, INDEMNIFICATION OR OTHERWISE, FOR MODIFICATION OR CUSTOMIZATION OF ANY
GENESYS SOFTWARE BY GENESYS, CUSTOMER OR ANY THIRD PARTY EVEN IF SUCH CUSTOMIZATION
AND/OR MODIFICATION IS DONE USING GENESYS TOOLS, TRAINING OR METHODS DOCUMENTED BY
GENESYS.

Genesys Telecommunications Laboratories, Inc.
2001 Junipero Serra Boulevard
Daly City, CA 94014
Telephone/Fax (844) 274-5992
www.genesys.com

http://wpflocalization.codeplex.com/
http://www.genesys.com/

Interaction Scripter Developer's Guide

477

Compliance

Please note that it is the sole responsibility of the user of this software to comply with all federal, state,
and local laws applicable to the software, the use thereof, and the conduct of the user’s business. In no
event will Genesys Telecommunications Laboratories, Inc. (“Genesys”) be responsible for providing,
implementing, configuring, or coding software in a manner that complies with any laws or regulatory
requirements that apply to the user’s business or industry, including, without limitation, U.S. Federal
Trade Commission (FTC) regulations, Federal Communications Commission (FCC) regulations, the
Telephone Consumer Protection Act (TCPA) of 1991, and the Health Insurance Portability and
Accountability Act (HIPAA) (collectively “Customer Specific Laws”). The user agrees that it will comply
with all such Customer Specific Laws and, regardless of anything to the contrary, in no event will
Genesys, its affiliates, or related entities be held liable for any claim or action arising from, or related to,
the user’s failure to comply with any Customer Specific Laws. The above conditions apply regardless of
anything to the contrary and your use of Interaction Dialer constitutes your acceptance of the above
provisions.

Interaction Scripter Developer's Guide

478

Revisions

Interaction Scripter 2018 R3

1. Interaction Connect now supports custom outbound scripts. Starting with PureConnect 2018
R3, call center agents can use Interaction Connect to process outbound Dialer calls with custom
script screen pops. Previously, Interaction Connect supported base scripts only. Agents were
required to use Interaction Scripter .NET client for campaigns with custom scripts. To use
Interaction Connect instead, custom scripts must conform with new programming
requirements.

Interaction Connect processes JavaScript asynchronously, breaking tasks into threads that
execute independently. Conversely, Interaction Scripter .NET is synchronous. It waits for each
script statement to finish before moving to the next. For this reason, Interaction Connect and
Scripter .NET have divergent programming requirements.

o Custom scripts must be written for one client or the other.

o The same custom script cannot be used in both Scripter .NET and Interaction Connect.

o Legacy scripts written for Interaction Scripter .NET work as before in that client
application.

o To be compatible with Interaction Connect, scripts must implement callback functions
that indicate when asynchronous operations complete.

o Scripts written for Scripter .NET should not implement callbacks designed for Connect.

For more information, see Writing custom scripts for Interaction Connect or Scripter .NET,
Sample Interaction Connect scripts, and Sample ICWS Dialer Web Application.

2. IS_Action_CallComplete has a new Boolean parameter named MakeAdditionalFollowUpCall. It
indicates whether the user should be put into "Additional Follow Up status", in support of a
feature that allows an agent to dial additional calls while in that status.

3. The IS_ActioStartReceivingCalls action now accepts an optional new campaign attribute,
containing a comma-separated list of campaign names for the Dialer agent to receive calls from.

4. IS_Event_ManualOutboundCallStatus has updated arguments. Status now returns a code
number corresponding to StatusName, a new attribute that returns the status string.

5. The ConferenceObject.subObjectChangedHandler callback now has two parameters instead of
three.

6. Documented a new event: IS_Event_PreviewCallSkipped is raised when a preview call is
successfully skipped.

7. Added a new standard action: IS_Action_CompleteConsult. This action ends a consult call in
scripts for Interaction Connect only.

8. Updated IS_Action_Transfer to add an "audience" parameter. This new parameter is used only
with scripts for Interaction Connect.

9. Documented capitalization conventions to use when writing scripts.

10. A new action, IS_Action_QueryContactList queries a specified contact list for records.

Interaction Scripter Developer's Guide

479

11. Two conference object callbacks were added for use in scripts for Interaction Connect.
ConferenceObject.conferenceObjectInitializedHandler is invoked when the conference object
has initialized. ConferenceObject.conferenceStartedHandler is invoked when the conference call
has started.

12. A new ChatObject.messages property returns an array of messages about a chat interaction
after the chat object has been initialized.

13. A new ChatObject.sendChatMessage method sends a chat message to the remote party on
behalf of the current user.

14. A new ChatObject.messages property of a chatObject returns an array of messages of that
chat interaction after the chatObject had been initialized.

15. The ChatObject.SubObjectChangeHandler can now be an assigned callback that gets alerted
with new messages when the chat Interaction receives new messages.

16. A new CallObject.currentDialerCallId method returns the Id of the current active dialer
interaction. This can be used to set a CallObject's id to initialize it with the current active dialer
call.

17. A new dialer.sendCustomHandlerNotification method initiates custom handlers through the
custom notification initiator.

18. A new dialer.subscribeToCustomHandlerNotification method allows a custom script to
asynchronously subscribe and listen to a Send custom notification step in a custom handler.

19. Fixed a bug that could prevent an agent in Available, Forward status from entering a phone
number or optional notes while using a custom script.

20. Added a note to IS_Action_PlayWav. For custom scripts in Scripter Connect, the wav file
specified for the IS_Action_PlayWav action must be located in the Resource Path directory on
the CIC server (I3\IC\Resources by default).

21. Interaction Connect now allows agents executing a base script to change their user status
when they are not involved in a Dialer interaction. Agents can change their status before
logging into a campaign, or while on break.

22. A new action, IS_Action_PlaceChat initializes a chat between the current user and another user.

23. A new action, IS_Action_PlaceChat initializes a chat between the current user and another user.
When the chat is initialized, a new IS_Event_ChatInitialized event is emitted. Your scripts should
listen for this event to ensure that they do not proceed until the chat is fully initialized.

24. The ConferenceObject.create method now has 1 or 2 input parameters, depending upon
whether the script will run in Scripter .NET or Interaction Connect. To create a conference in an
Interaction Connect script, two interaction id's must be passed to this method. Scripter .NET
requires a single interaction ID to be passed.

25. The Queue object for custom scripts in Connect now deviates from Scripter.NET in a couple of
ways.

o The following Queue object properties are compatible with Scripter .NET, but not
Interaction Connect:

Interaction Scripter Developer's Guide

480

Queue.errorHandler
Queue.lastError
Queue.lastErrorId

o The Queue.connect method can be used asynchronously in Connect. It now accepts a
callback argument that takes no parameters. In addition, Queue.connect no longer
supports Line Queue as a Type parameter.

o Queue.errorhandler, Queue.lastError, and Queue.lastErrorId should not be used in
scripts for Connect, but may be used as before in scripts for Scripter .NET.

o The Queue.startCallObjectsEnum, Queue.startChatObjectsEnum,
Queue.startConferenceObjectsEnum and Queue.startObjectIdsEnum properties now
accept an optional callback (for use with Connect scripts only) whose single parameter
contains the result.

26. Similarly, the User object is programmed differently for Connect scripts:

o The User.errorHandler, User.lastError, and User.lastErrorId properties are compatible
with Scripter .NET as before, but these properties should not be used in scripts for
Interaction Connect.

o The User.startAccessibleQueuesEnum and User.startViewableWorkgroupsEnum
properties now accept an optional callback (for use with Connect scripts only) whose
single parameter contains the result.

27. Noted in the Interaction Scripter Actions topic that a few actions should be used with care, since
they potentially affect the performance of a script or server. Actions marked as having scale
impact include:

o IS_Action_QueryContactList—because an inefficient or overly broad query could affect
the performance of a database server.

o Dialer.sendCustomHanderlNotification Method—starting a very complex, long-running
handler could affect the performance of a PureConnect server.

Interaction Scripter 2018 R2

• A new meta tag allows a script to show or hide the command toolbar. See Why is the META tag
used?

• Revised Example 2 in IS_Action_Transfer to correct a misspelled method name. The line
onclick="IS_BlindTransferl(‘101') is now onclick="IS_BlindTransfer(‘101').

• Revised IS_Action_Listen to state that CallID is a required attribute. Also updated code samples
in that topic.

• Updated the IS_Actions_ClientStatus topic to ensure that only default statuses are listed, and
that the case of statuses matches CIC default status names in PureConnect .

Interaction Scripter 2017 R4

• Improved appearance of code listings and topics in this document.

• Updated Copyright and Trademark Information.

Interaction Scripter Developer's Guide

481

• Applied Genesys terminology.

Interaction Scripter 2017 R1

• Added IS_Event_ContactDataLoaded and IS_Event_ManualOutboundCallStatus events.

• Added IS_Action_ManualOutboundCall and IS_Action_RequestContactData actions.

Interaction Scripter 2016 R4

• The IS_Action_Exit Standard Action has a new attribute that provides you with ability to exit
Dialer as well as Scripter.

Interaction Scripter 2016 R3

• The IS_Action_LogonAll Predictive Action is a new action that can globally log an agent into
Dialer as well as all currently running campaigns.

Interaction Scripter 2016 R2

• The IS_Attr_CampaignGroup Predictive Attribute can now provide the name of the active
Campaign Group in the Campaign Sequence that is currently running when using the Advanced
Campaign Management feature.

• You can learn more about this new feature in the Advanced Campaign Management for
Interaction Dialer - Overview Guide, which is available in the Interaction Dialer section of the CIC
Documentation Library.

Interaction Scripter 2016 R1

• Updated documentation and screen shots to reflect new logo and color scheme.

Interaction Scripter 2015 R4

• No revisions were made to this document for R4.

Interaction Scripter 2015 R3

• Updated various topics with code examples

Interaction Scripter 2015 R2

1. Added two new methods that can be used to prevent sensitive information from being
recorded:

2. CallObject.pauseSecureRecord - This method can be used to pause recording.

3. CallObject.resumeSecureRecord - This method resumes recording.

4. Added information to the PreviewTimeout Events topic that pertains to the new Manual Calling
feature.

5. Added clarification that the IS_Action_CallComplete does not disconnect the call.

http://help.inin.com/
http://help.inin.com/

Interaction Scripter Developer's Guide

482

6. Updated the IS_Action_StartReceivingCalls Predictive action topic with information pertaining to
the use of the Dialer StartReceivingCalls Per Campaign server parameter.

7. Added more details about using the Interaction Scripter Debugger.

Interaction Scripter 2015 R1

1. Updated documentation to reflect changes required in the transition from version 4.0 SU# to
Interaction Dialer 2015 R1, such as updates to product version numbers, system requirements,
installation procedures, references to Interactive Intelligence Product Information site URLs, and
copyright and trademark information.

2. Added three new PreviewTimeout Events, which are Predictive Events that are specifically
designed for use with Preview campaigns that use a preview countdown timer.

Interaction Scripter 4.0 Service Update 3

1. Added scripterNotiferName property. It returns the machine name of the server that the agent
is currently logged into.

2. Added campaignsChangedHandler callback property, invoked whenever a user is logged into or
out of a campaign.

3. Added a campaign object with properties that encapsulate the Name, ID and Status of a Dialer
campaign.

4. Added User.startAvailableCampaignObjectEnum Property to the User object. This property
returns an enumeration of accessible queues that current agent has rights to view and modify.

5. Added a new element to the Scripter environment called Behaviors. At this time there is only
one Predictive Behavior called IS_Bhvr_SuppressToast.

6. Custom scripts can now stream audio files from the ODS server by specifying http or https URI's.

Interaction Scripter 4.0 Service Update 2

No revisions were made to this document for SU2.

Interaction Scripter 4.0 Service Update 1

The IS_Action_Logon action no longer requires an agent type attribute. Since agent type can only be set
for the agent's entire Dialer session and not per campaign, it no longer makes sense to specify it on this
action.

Interaction Scripter 4.0

1. Interaction Scripter's reason code based call completion actions were reworked for Dialer 4.0.
The following actions were removed from the documentation because they are now
deprecated:

IS_Action_AnsweringMachine
IS_Action_BeginBreak
IS_Action_CallComplete
IS_Action_Deleted

Interaction Scripter Developer's Guide

483

IS_Action_DisableTransitionDialog
IS_Action_EnableTransitionDialog
IS_Action_Failure
IS_Action_Fax
IS_Action_Logoff
IS_Action_NoAnswer
IS_Action_NoLines
IS_Action_PhoneNumberDeleted
IS_Action_PhoneNumberSuccess
IS_Action_RemoteHangUp
IS_Action_Schedule
IS_Action_SIT
IS_Action_Success
IS_Action_Transferred
IS_Action_WrongParty

These actions were replaced by one new action, IS_Action_CallComplete, which should be used
to disposition calls. It requires an attribute named wrapupcode that contains the wrap up code
to be used when dispositioning the call. It supports a Boolean attribute named abandoned
which indicates whether the call should be classified as abandoned. In addition,
IS_Action_CallComplete supports all of the schedule-based attributes that the old
IS_Action_Schedule action supported.

The old actions are deprecated, but they are still functional. Existing customer scripts developed
for Scripter 3.0 will not be broken. Old actions will generate debug entries when Scripter is run
with the /debug flag. Legacy actions must use appropriate system-defined wrap up codes and
ignore the wrapupcode attribute on the element (DIALER-6108).

2. IS_Action_FullScreen was removed because the application framework that Scripter Client now
runs in does not support full screen mode at this time (DIALER-4205).

3. Interaction Dialer no longer supports workflows. Instead, it allows multiple campaigns to run at
the same time. For this reason, two workflow-related attributes are no longer supported, even
in legacy scripts. The removed attributes are IS_Attr_WorkflowId, which contained the name of
the workflow that a campaign object belonged to, and IS_Attr_WorkflowUUID, which contained
the id number of the workflow. A third attribute, IS_Attr_CampaignUUID was also deprecated. It
contained the campaign ID. It is replaced by a new IS_Attr_CampaignID attribute. In Dialer 4,
customers should use these attributes instead of deprecated attributes (DIALER-6214):

o IS_Attr_CampaignName is a new attribute which contains the campaign name.

o IS_Attr_CampaignID now contains the campaign ID. In earlier releases, it contained the
campaign name.

4. Two predictive "NonDialerCallScripting" actions are now used to delay closing a script when the
agent has logged out of all the campaigns that the script is associated with (DIALER-6594).

o IS_Action_BeginNonDialerCallScripting prevents the agent from being logged out of one
campaign and into another while the agent is on a non-Dialer call. Automatic campaign
login will be delayed until the agent ends the non-dialer call.

Interaction Scripter Developer's Guide

484

o IS_Action_EndNonDialerCallScripting tells Scripter to resume automatic login of an
Agent to a new campaign after transitioning was delayed by
IS_Action_BeginNonDialerCallScripting.

5. IS_Action_RequestLogoff now accepts an optional campaigns attribute, which can be used to
request a logout for specific campaigns. If that attribute is not populated, then the action
requests a logout for all campaigns. The format of the attribute is a list of campaign names
separated by commas.

	Interaction Scripter Developer's Guide
	Organization of Material
	What is Interaction Scripter?
	Interaction Scripter Client supports two types of scripts

	Scripter from a programmer's perspective
	Event
	Actions
	Attributes
	Behaviors

	Writing custom scripts for Interaction Connect or Scripter .NET
	Base scripts run in both clients
	Custom scripts run in one client or the other
	Scripter .NET is synchronous
	Interaction Connect is asynchronous
	The callback property ensures that IS_Actions execute properly in Interaction Connect

	Additional callbacks added to support Interaction Connect
	Other scripting modifications to support Interaction Connect
	Summary
	See Also

	Sample Interaction Connect scripts
	Sample scripts
	Example 1
	Example 1 source code

	Example 2
	Example 2 source code

	See Also

	Sample ICWS Dialer Web Application
	Download the example application
	Launch the app and connect to ODS
	Interact with Calls
	Log Out

	Capitalization conventions
	IceLib.Dialer API Documentation
	Interaction Scripter Debugger
	Launch Scripter in Debug mode
	Controls on the Debug Dialog
	Error Message list box
	Script URL Field
	Close button
	Clear button

	Tab pages
	Error
	Suggestion
	Example
	Stack

	Interaction Scripter Actions
	Standard Actions
	Predictive Actions
	Using Scripter actions is a two step process
	Standard Actions
	Standard Actions
	IS_Action_ClientStatus
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_CompleteConsult
	Definition
	Attributes
	Example

	IS_Action_Close
	Definition
	Attributes
	Example 1
	Example 2

	IS_Action_Disconnect
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_Exit
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_Hold
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_Listen
	Definition
	Attributes
	Example 1
	Example 2

	IS_Action_Mute
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_Park
	Definition
	Attributes
	Example 1
	Example 2

	IS_Action_Pickup
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_PlaceCall
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_PlaceChat
	Definition
	Attributes
	Example

	IS_Action_PlayWav
	Definition
	Attributes
	Example 1
	Example 2

	IS_Action_Private
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_Record
	Definition
	Attributes
	Example 1
	Example 2
	Example 3
	Example 4

	IS_Action_RecordPause
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_SelectPage
	Definition
	Attributes
	Example

	IS_Action_SendToVoiceMail
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_SetForeground
	Definition
	Attributes
	Example

	IS_Action_Trace
	Definition
	Example 1
	Example 2

	IS_Action_Transfer
	Definition
	Attributes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5 (Interaction Connect only)

	Predictive Actions
	Predictive Actions
	IS_Action_BeginNonDialerCallScripting
	Definition
	Attributes

	IS_Action_CallComplete
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_EndBreak
	Definition
	Attributes
	Example 1
	Example 2

	IS_Action_EndNonDialerCallScripting
	Definition
	Attributes

	IS_Action_EstablishPersistentConnection
	Attributes
	Notes
	Example

	IS_Action_Logon
	Definition
	Attributes
	Example 1
	Example 2

	IS_Action_LogonAll
	Definition
	Attributes
	Example

	IS_Action_ManualOutboundCall
	Definition
	Attributes
	Example

	IS_Action_MarkCallForFinishing
	Definition
	Attributes
	Example

	IS_Action_PlacePreviewCall
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_QueryContactList
	Definition
	Attributes
	Example

	IS_Action_RequestBreak
	Definition
	Attributes
	Example

	IS_Action_RequestContactData
	Definition
	Attributes
	Example

	IS_Action_RequestLogoff
	Definition
	Attributes
	Example

	IS_Action_SkipPreviewCall
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_Stage
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	IS_Action_StartReceivingCalls
	Definition
	Attributes
	Example
	Example 2

	IS_Action_TransferToAttendant
	Definition
	Attributes
	Example

	IS_Action_WriteData
	Definition
	Attributes
	Example 1
	Example 2
	Example 3

	Interaction Scripter Events
	Interaction Scripter Events
	Standard Events
	Predictive Events

	Standard Events
	Standard Events
	IS_Event_ChatInitialized
	Definition
	Attributes
	Example:

	IS_Event_QueueObjectAdded
	Definition
	Attributes
	Syntax
	Example

	IS_Event_QueueObjectChanged
	Definition
	Attributes
	Syntax
	Example

	IS_Event_QueueObjectRemoved
	Definition
	Attributes
	Syntax
	Example 1
	Example 2

	Predictive Events
	Predictive Events
	IS_Event_BreakGranted
	Definition
	Attributes
	Example

	IS_Event_ContactDataLoaded
	Definition
	Attributes
	Example
	Sample JSON

	IS_Event_DataPop
	Definition
	Attributes
	Example 1
	Example 2

	IS_Event_ManualOutboundCallStatus
	Definition
	Attributes
	Example

	IS_Event_NewPredictiveCall
	Definition
	Attributes
	Example

	IS_Event_NewPreviewCall
	Definition
	Attributes
	Example

	IS_Event_PreviewCallSkipped
	Definition
	Attributes
	Example

	IS_Event_PredictiveCallReleased
	Definition
	Attributes
	Example

	IS_Event_PreviewDataPop
	Definition
	Attributes
	Example 1
	Example 2

	PreviewTimeout Events
	PreviewTimeout Events
	IS_Event_PreviewTimeoutStarted
	Definition
	Attributes
	Example

	IS_Event_PreviewTimeoutStopped
	Definition
	Attributes
	Example

	IS_Event_PreviewTimeoutExpired
	Definition
	Attributes
	Example

	Interaction Scripter Attributes
	Interaction Scripter Attributes
	Predictive Attributes
	Predictive Attributes
	Reserved Read-Only Attributes

	Tips for Using Global Variables
	IS_Attr_Attempts
	Definition
	Usage
	Example

	IS_Attr_CallId
	Definition
	Usage
	Example

	IS_Attr_CampaignID
	Definition
	Usage
	Example

	IS_Attr_CampaignName
	Definition
	Usage
	Example

	IS_Attr_CampaignGroup
	Definition
	Usage
	Example

	IS_Attr_ContactCampaignID
	Definition
	Usage

	IS_Attr_DialinsgMode
	Definition
	Usage
	Example

	IS_Attr_I3_RowID
	Definition
	Usage
	Example

	IS_Attr_Schedphone
	Definition
	Example

	IS_Attr_Status
	Definition
	Usage
	Example

	IS_Attr_Zone
	Definition
	Usage
	Example

	System Services Attributes
	System Services Attributes
	IS_System_AgentID
	Definition
	Example

	IS_System_AgentName
	Definition
	Example

	IS_System_ClientStatus
	Definition
	Example

	Custom Scripter Attributes
	Example

	Interaction Scripter Behaviors
	Interaction Scripter Behaviors
	Predictive Behaviors
	Predictive Behaviors
	IS_Bhvr_SuppressToast
	Definition
	Attributes
	Example

	scripter object
	scripter object
	Methods
	Properties
	Example

	scripter.createCallObject Method
	Definition
	Prototype
	Syntax
	Input Parameters
	Return Values
	Example

	scripter.createChatObject Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	scripter.createConferenceObject Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	scripter.createQueue Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	scripter.createUser Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	scripter.trace Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	scripter.breakStatus Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	scripter.callObject Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	scripter.chatObject Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	scripter.conferenceObject Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	scripter.myQueue Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	scripter.myUser Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	Scripter.notifierName Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	scripter.queue Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	scripter.user Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	CallObject
	CallObject
	Methods
	Callbacks
	Properties

	CallObject.blindTransfer Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.callObjectInitializedHandler Callback
	Definition
	Compatibility
	Example

	CallObject.consultTransfer Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.currentDialerCallId Method
	Definition
	Example
	Value Returned

	CallObject.dial Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.disconnect Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.extendedDial Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.getAttribute Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.hold Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.listen Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	CallObject.mute Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.pause Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.pickup Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	CallObject.playDigits Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	CallObject.private Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.record Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	CallObject.setAttribute Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	CallObject.voicemail Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.errorHandler Callback
	Definition
	Compatibility
	Syntax
	Input Parameter
	Example

	CallObject.stateChangeHandler Callback Property
	Definition
	Compatibility
	Syntax
	Usage
	Return Values
	Variables
	Function Pointer

	CallObject.conferenceId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	CallObject.creationTime Property
	Definition
	Syntax

	Usage
	Value Assigned
	Value Returned

	CallObject.direction Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	CallObject.id Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	CallObject.isHeld Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.isMonitored Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.isMuted Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.isParty Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	CallObject.isPaused Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.isPrivate Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.isRecording Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.lastError Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.lastErrorId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.localId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.localLocation Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.localName Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.remoteId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.remoteLocation Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.remoteName Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.state Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	CallObject.stateString Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	CallObject.pauseSecureRecord Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	CallObject.resumeSecureRecord Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	campaign object
	campaign object
	Methods
	Callbacks
	Properties

	campaign.campaignName Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	campaign.campaignId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	campaign.campaignState Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	campaign.campaignStateString Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject
	ChatObject
	Methods
	Callbacks
	Properties

	ChatObject.chatObjectInitializedHandler Callback
	Definition
	Compatibility
	Example

	ChatObject.disconnect Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ChatObject.getAttribute Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ChatObject.listen Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ChatObject.pause Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ChatObject.pickup Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ChatObject.private Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ChatObject.record Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ChatObject.sendChatMessage Method
	Definition
	Syntax
	Input Parameters
	Example

	ChatObject.setAttribute Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ChatObject.errorHandler Callback Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned

	ChatObject.ObjectDestroyedHandler Callback Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned

	ChatObject.ObjectSpecificChangeHandler Callback Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned

	ChatObject.ObjectSpecificErrorHandler Callback Property
	Definition
	Compatibility
	Syntax
	Value Assigned
	Example

	ChatObject.ReceivedFileHandler Callback Property
	Definition
	Compatibility
	Syntax
	Input Parameters

	ChatObject.ReceivedURLHandler Callback Property
	Definition
	Syntax
	Compatibility
	Syntax
	Input Parameters

	ChatObject.stateChangeHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Input Parameters
	Variables

	ChatObject.SubObjectChangeHandler Callback Property
	Definition
	Compatibility
	Syntax
	Input Parameters
	Value Assigned
	Example

	ChatObject.creationTime Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.direction Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.id Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.isMonitored Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.isPaused Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.isPrivate Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.isRecording Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.lastError Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.lastErrorId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.localId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.localLocation Property
	Definition
	Syntax
	Usage
	Value Returned

	ChatObject.localName Property
	Definition
	Syntax
	Usage
	Value Returned

	ChatObject.messages Property
	Definition
	Syntax

	ChatObject.remoteId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.requestedAttributeReturnHandler Callback
	Definition
	Compatibility
	Syntax
	Input Parameters
	Return Values
	Example

	ChatObject.remoteLocation Property
	Definition
	Syntax
	Usage
	Value Returned

	ChatObject.remoteName Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ChatObject.state Property
	Definition
	Syntax
	Usage
	Value Returned

	ChatObject.stateString Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ConferenceObject
	ConferenceObject
	Methods
	Callbacks
	Properties
	Enumerations

	ConferenceObject.add Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	ConferenceObject.create Method
	Definition
	Creating a conference in Interaction Connect scripts
	Syntax
	Input Parameters
	Example

	Creating a conference in Scripter .NET scripts
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	ConferenceObject.disconnectParty Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values

	ConferenceObject.errorHandler Callback Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned

	ConferenceObject.objectDestroyedHandler Callback Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned

	ConferenceObject.objectSpecificChangeHandler Callback Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned

	ConferenceObject.stateChangeHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Variables

	ConferenceObject.subObjectChangeHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Parameters
	Value Assigned
	Example

	ConferenceObject.conferenceObjectInitializedHandler Callback Property
	Definition
	Compatibility
	Syntax
	Example

	ConferenceObject.conferenceStartedHandler Callback Property
	Definition
	Compatibility
	Syntax
	Example

	ConferenceObject.id Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ConferenceObject.lastError Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ConferenceObject.lastErrorId Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	ConferenceObject.startMemberIdsEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	Queue object
	Queue object
	Methods
	Callbacks
	Properties
	Enumerations

	Queue.connect Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Return Values
	Example

	Queue.callObjectAddedHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Parameters
	Value Assigned
	Example

	Queue.errorHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Parameters
	Value Assigned
	Example

	Queue.objectAddedHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Parameters
	Value Assigned

	Queue.objectChangedHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Parameters
	Value Assigned
	Example

	Queue.objectRemovedHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Parameters
	Value Assigned
	Example

	Queue.activeMonitor Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	Queue.lastError Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned
	Value Returned

	Queue.lastErrorId Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned
	Value Returned

	Queue.name Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	Queue.type Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	Queue.startCallObjectsEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)
	Interaction Connect Example

	Queue.startChatObjectsEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	Queue.startConferenceObjectsEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	Queue.startObjectIdsEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	User Object
	User Object
	Methods
	Callbacks
	Properties
	Enumerations

	User.errorHandler Callback Property
	Definition
	Compatibility
	Syntax
	Parameters
	Usage
	Value Assigned
	Value Returned

	User.statusChangeHandler Callback Property
	Definition
	Usage
	Compatibility
	Syntax
	Parameters
	Value Assigned
	Value Returned

	User.userChangeHandler Callback Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.userLoginChangeHandler Callback Property
	Definition
	Compatibility
	Usage
	Syntax
	Parameters
	Value Assigned
	Value Returned

	User.canListen Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.canMakePrivate Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.canRecord Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.extension Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.id Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.isDND Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.isLoggedIn Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.isOnPhone Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.lastError Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.lastErrorId Property
	Definition
	Compatibility
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.name Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.statusMessage Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.untilDateTime Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned

	User.startAccessibleQueuesEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	User.startAvailableCampaignObjectEnum Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	User.startAvailableStatusMessagesEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	User.startLoggedInStationsEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	User.startViewableWorkgroupsEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	User.startWorkgroupsEnum Enumeration Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Java Enumeration Example (JavaScript)

	dialer object
	dialer object
	Definition
	Methods
	Callbacks
	Properties
	Example

	dialer.endBreak Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Example

	dialer.requestBreak Method
	Definition
	Syntax
	Prototype
	Input Parameters
	Example

	dialer.sendCustomHandlerNotification Method
	Definition
	Input Parameters
	Value Returned
	Example

	dialer.subscribeToCustomHandlerNotification Method
	Definition
	Input Parameters
	Value Returned

	dialer.campaignLoginHandler Callback Property
	Definition
	Compatibility
	Syntax
	Parameters
	Example

	dialer.campaignLogoutHandler Callback Property
	Definition
	Compatibility
	Syntax
	Parameters
	Example

	dialer.breakRequestedHandler Callback Property
	Definition
	Compatibility
	Syntax
	Parameters
	Example

	dialer.breakGrantedHandler Callback Property
	Definition
	Compatibility
	Syntax
	Parameters

	dialer.breakEndedHandler Callback Property
	Definition
	Compatibility
	Syntax
	Parameters

	campaignsChangedHandler Callback Property
	Definition
	Compatibility
	Syntax
	Parameters
	Example

	dialer.breakStatus Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	dialer.campaigns Property
	Definition
	Syntax
	Usage
	Value Assigned
	Value Returned
	Example

	Script Examples
	Script Examples
	Agent Breaks
	Agent Breaks
	Break Process Flowcharts
	Break Process Pseudocode
	Break request
	Break-granted event
	Return from break

	Break Process JavaScript
	Break request
	Break-granted event
	Return from break

	Blended Campaigns
	Blended Campaigns
	Blended Campaign Flowcharts
	Blended Campaign Pseudocode
	Initialize object added handler:
	Handle incoming call:

	Blended Campaign JavaScript
	Initialize object added handler
	Handle incoming call

	Blind Transfer
	Conference Calls
	Conference Calls
	Conference Call Process Flowchart
	Conference Call Process Pseudocode
	Conference Call Process Javascript
	Conference Call Process Javascript
	Conference Call Process JavaScript
	Create Conference Call and add parties
	Conference with Third Party
	Conference with Third Party then Locally Disconnect
	Call Third Party, Create Conference, then Disconnect Agent

	Consult Transfer
	Consult Transfer with Disposition
	Get and Set attributes
	Inbound Waiting For Call Page
	Play Digits To a Call
	Preview Campaigns
	Preview Campaigns
	IS_Event_PreviewDataPop
	IS_Event_NewPreviewCall

	Preview Process Flowchart
	Preview Process Pseudocode
	Preview data pop
	Preview call placement

	Preview Process JavaScript
	Preview data pop
	Preview call placement

	Supporting Finishing Agents
	Transferring Calls
	Transferring Calls
	Blind Transfers
	recipient
	consult

	Consult Transfers

	Transfer Process Flowcharts
	Transfer Process Pseudocode
	Blind transfer:
	Consult transfer:

	Transfer Process JavaScript
	Blind Transfer:
	Consult transfer:

	User Queue Watcher Script
	Workgroup Queue Watcher Script

	Frequently Asked Questions
	Frequently Asked Questions
	When does my script need to set an agent's status?
	What functions or objects are reserved by Interaction Scripter?
	Why is the META tag used?
	How is information sent back to the database?
	What actually resets and removes script variables after a call has been completed?
	Is there a way to make variables persistent across all sessions (tabs)?
	Does Scripter support multiple call sessions?
	Can I run a web-based application within Scripter?
	What limitations does Scripter have regarding its browsing capabilities?
	Can an application on one tab send information to, or trigger events on another tab?
	What methods change focus between tabs?
	Is JavaScript case-sensitive?
	Does Interaction Scripter support frames?
	Does Scripter provide a debugger?

	Copyright and Trademark Information
	Copyright and Trademark Information
	Compliance

	Revisions
	Interaction Scripter 2018 R3
	Interaction Scripter 2018 R2
	Interaction Scripter 2017 R4
	Interaction Scripter 2017 R1
	Interaction Scripter 2016 R4
	Interaction Scripter 2016 R3
	Interaction Scripter 2016 R2
	Interaction Scripter 2016 R1
	Interaction Scripter 2015 R4
	Interaction Scripter 2015 R3
	Interaction Scripter 2015 R2
	Interaction Scripter 2015 R1
	Interaction Scripter 4.0 Service Update 3
	Interaction Scripter 4.0 Service Update 2
	Interaction Scripter 4.0 Service Update 1
	Interaction Scripter 4.0

