

SOAP API

Printed help

2018 R2

Last updated 2018-02-26

Table of Contents
SOAP API Developer's Guide ... 4

SOAP API Developer's Guide ... 4

CIC and SOAP API Developer's Guide .. 4

Introduction to SOAP in the CIC Environment .. 5

Install and Configure SOAP ISAPI Listener .. 31

Install SOAP Notifier COM ... 46

Appendix A: SOAP Transport Information and Control .. 47

Appendix B: SOAP Tools .. 51

Appendix C: Structure of IP Notification Messages .. 81

Appendix D: SOAP ISAPI Listener Fault Messages .. 83

Glossary ... 84

Revisions ... 89

Copyright and Trademark Information ... 90

CIC and SOAP API Developer's Guide .. 92

Audience ... 92

Organization of Material ... 92

Related Documentation .. 93

Recommended Web Links .. 93

Introduction to SOAP in the CIC Environment .. 94

Introduction to SOAP in the CIC Environment .. 94

Who uses CIC's SOAP functionality? ... 95

SOAP's Request/Response Model ... 95

What is XML? .. 96

What is the relationship between XML and markup languages, such as HTML or SGML? 97

Advantages of XML over HTML ... 99

Structure of an XML file .. 100

Structure of SOAP Messages ... 102

CIC's SOAP Components ... 106

Install and Configure SOAP ISAPI Listener .. 119

Install and Configure SOAP ISAPI Listener .. 119

SOAP ISAPI Filter Schema .. 129

Reinstall/Uninstall SOAP Listener ... 131

Install SOAP Notifier COM ... 131

Install SOAP Notifier COM ... 131

Reinstall/Uninstall SOAP Notifier COM Components ... 132

Appendix A: SOAP Transport Information and Control .. 132

Appendix A: SOAP Transport Information and Control .. 132

HTTP Transport ... 133

Appendix B: SOAP Tools .. 136

Appendix B: SOAP Tools .. 136

Initiator Tools .. 137

Request Tools .. 137

Payload Processing Tools .. 142

Invocation Tools .. 160

Helper Tools .. 164

Appendix C: Structure of IP Notification Messages .. 166

Appendix C: Structure of IP Notification Messages .. 166

Request Message Structure .. 166

Response Message Structure .. 167

Appendix D: SOAP ISAPI Listener Fault Messages .. 168

Glossary ... 169

Revisions ... 174

CIC 2018 R2 ... 174

CIC 2018 R1 ... 174

CIC 2015 R4 ... 174

CIC 2015 R1 ... 175

CIC 4.0 SU1 and SU2 .. 175

CIC 4.0 GA .. 175

Copyright and Trademark Information ... 175

SOAP API Developer's Guide

SOAP API Developer's Guide

CIC and SOAP API Developer's Guide

Audience

SOAP stands for Simple Object Access Protocol. SOAP is an XML-based protocol specification that defines
how information can be exchanged between computers. SOAP supplies the conventions used to invoke
methods on servers, services, components and objects. This document introduces XML/SOAP concepts
and explains how SOAP facilitates robust data interactions between CIC and remote web services. SOAP
supplies the conventions used to invoke methods on remote servers, services, components and objects.

This publication is for managers, technical implementers, and other decision-makers who need to
understand the practical implications of SOAP technology in the CIC environment. The introduction is
written for a general audience who may not be familiar with XML or SOAP technology. Subsequent
sections of this document guide technical implementers through the process of preplanning, installing
and configuring the SOAP ISAPI Listener Task and SOAP Notifier COM Components. Instructions for using
the SOAP Tracer utility are also provided.

Organization of Material

This documentation is divided into logical, easy-to-digest sections that gradually introduce concepts and
specific product features. To fully understand the material, we recommend that you read topics in
order. However, most topics are hyperlinked for those who prefer to read in non-linear fashion.

• Introduction to SOAP in the CIC Environment provides short primers on XML and SOAP, and
explains the relationship between XML, SOAP and the Interaction Center platform. It introduces
CIC's SOAP Components.

• Install and Configure SOAP ISAPI Listener explains how to select a host server, apply prerequisite
service packs and hotfixes, and then install SOAP Listener components. This section also explains
how to configure the server to prevent denial of service attacks, and how to modify the
configuration so that only supported SOAPActions are forwarded to CIC for processing.

• Install SOAP Notifier COM explains how to install and register components needed to run or
develop third-party SOAPNotifierCOM applications on a desktop PC.

• Appendix A (SOAP Transport Information) describes HTTP schema used to transport SOAP
packets in the CIC environment. This appendix is for advanced readers who are curious about
SOAP transport mechanisms used in CIC.

• Appendix B (SOAP Tools) describes tools in Interaction Designer that process SOAP requests and
responses.

• Appendix C (Structure of IP Notification Messages) explains the notification message format and
protocols used to send requests to and from CIC's Notifier subsystem.

• Appendix D (SOAP ISAPI Listener Fault Messages) is a reference about fault messages returned
by the SOAP ISAPI Listener.

• Special terms used with SOAP technology are defined in a Glossary.
• Revisions describes what's new by release.

Related Documentation

1. CIC and SOAP API Developer's Guide (this document). This paper provides primers on SOAP and
XML, and discusses the components that must be installed to implement SOAP functionality in
CIC.

2. Interaction Center SOAP Listener Setup installs SOAP ISAPI components on an IIS server. We
highly recommend that you read Install and Configure SOAP ISAPI Listener before running the
install.

3. The SOAP Notifier COM Components Install installs and registers component software used by
developers to create high-performance SOAP applications.

4. SOAP Notifier COM setup optionally installs the SOAP Notifier COM API Developer's Guide
(Soap_Notifier_COM_API_DG.chm). This windows help file cross-references the interfaces,
methods, and properties exposed by SOAP Notifier COM objects.

5. SOAP Tools are documented in Interaction Designer help. These help topics appear when a SOAP
tool or toolstep has focus and the F1 key is pressed in Interaction Designer.

Recommended Web Links
XML Home Page at the World Wide Web Consortium (W3C)

http://www.w3.org/XML/

XML Tutorial by W3Schools

http://www.w3schools.com/xml/default.asp

O'Reilly XML.COM

http://www.xml.com/

W3C SOAP specification document:

http://www.w3.org/TR/SOAP/

SOAP Tutorial by W3Schools

https://www.w3schools.com/xml/xml_soap.asp

Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl

Namespaces in XML

http://www.w3.org/TR/REC-xml-names/

Introduction to SOAP in the CIC Environment

http://www.w3.org/XML/
http://www.w3schools.com/xml/default.asp
http://www.xml.com/
http://www.w3.org/TR/SOAP/
https://www.w3schools.com/xml/xml_soap.asp
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/REC-xml-names/

Introduction to SOAP in the CIC Environment

This section is for managers and other decision makers who need to understand the practical
implications of SOAP technology in a CIC environment. No prior knowledge of XML or SOAP is required
to understand the concepts presented here. XML and SOAP are standards for information exchange that
were developed for the Internet.

What is SOAP?

SOAP stands for Simple Object Access Protocol. SOAP is an XML-based wire protocol designed for
decentralized, distributed networks such as the Internet. SOAP defines conventions that allow a
computer to invoke a remote procedure in another. These remote procedure calls (SOAP requests) can
be transported using a variety of network protocols.

For example, the SOAP Listener task on an IIS server uses HTTP protocol to transport SOAP messages to
and from the Internet. Applications developed using SOAP Notifier COM components use Notifier
protocol to transport SOAP messages to and from CIC server. SOAP itself is unconcerned with the
protocol used for transport. For this reason, SOAP can be used on many types of computer networks.

SOAP makes it possible for programs running on different computers to request and receive data from
one another in a structured way, even when different operating systems are used. SOAP provides the
XML vocabulary needed to specify method parameters, return values, and exceptions.

SOAP empowers remote computers to start handlers on CIC and receive data from CIC in response.
SOAP extends CIC interoperability to the entire Internet. Anything that "talks" SOAP through HTTP can
communicate with CIC. Any computer platform (Windows, Unix, Linux, Mac, etc.) that can create and
transport a SOAP message request can start a handler on CIC. Depending upon the type of request, the
handler may or may not send back a response containing values looked up by CIC.

For example, a Unix Server might use Enterprise JavaBeans (EJB) to generate a SOAP Message
requesting information about a user's status. When the request is received by CIC, it starts a handler
that looks up the user's status, generates a SOAP response, and transports the response back to the
requesting server. When the Unix system receives this SOAP payload, it uses another EJB to parse and
process the information.

Conversely, handlers created using CIC's SOAP tools can request data from web services and remote
procedures. For example, a handler might request the current price of a stock from a brokerage service,
check inventory levels from an inventory management system, conduct a credit card transaction, or
obtain a weather report. SOAP support in CIC is implemented by SOAP tools in Interaction Designer that
define initiators, invoke remote procedures, process requests and payloads. SOAP messages are
channeled through a SOAP ISAPI Listener task that runs on an IIS server. Developers can optionally use
SOAP Notifier COM components to develop COM applications that directly invoke SOAP handlers. SOAP
Notifier COM components are compatible with any language/application that supports Microsoft's
Component Object Model. These options are discussed later in this document.

Who uses CIC's SOAP functionality?

SOAP tools support open standards (SOAP, XML, WSDL, etc.) These tools promote interoperability and
are applicable to many types of application development. SOAP tools are primarily used by developers,
advanced handler authors, and professional services personnel. However, the services created using
SOAP tools are another matter. Anyone, anywhere on the Internet is potentially a consumer or provider
of information processed by SOAP handlers. The possibilities are limitless.

For example, an caller might enter a PIN number into an auto-attendant menu created using Interaction
Attendant. In turn, Attendant could start a SOAP handler that passes the PIN number to a remote web
service to look up information that is spoken back to the caller using CIC's text-to-speech capability. A
remote procedure invoked by SOAP can perform any kind of data processing tasks, ranging from a
simple lookups to complex transactions that accept complex data types as input. SOAP does not impose
any limits on the application functionality that can be invoked.

• OAP tools allow developers to create handlers that retrieve data from web services, or which
function as web services. Handler-based services can be described using Web Services
Description Language (WSDL)—an XML-based language that defines the functionality offered by
a web service and how to access it. WSDL makes it possible to describe a service on CIC so that a
worldwide audience can find and use it. WSDL describes the service, all parameters required to
invoke it, and the location (endpoint) where the service can be accessed.

• WSDL's are not available for handler examples included with this release. However, you can
easily create WSDL's to describe the example files.

• SOAP makes it possible for programs written in different languages and running on different
platforms to communicate with each other.

• SOAP integrates CIC with business-to-business interactions and information services.
• Once a SOAP endpoint is exposed to the internet, a handler may call into the endpoint, which

may be on the Internet or an Intranet.

SOAP is not appropriate for low-level, tightly-coupled transactions, due to network latency and the
overhead imposed by the SOAP messaging encoding and decoding. SOAP is best suited for simple, high-
level transactions, such as sending a name and PIN number to a service to obtain an account summary.

SOAP's Request/Response Model

CIC uses a request/response model to process SOAP requests. This mechanism should be familiar to
anyone who has used a web browser.

1. A client (e.g. web browser) connects to a server and passes a request (fetch a web page). The
client then waits for the server to respond.

2. The server responds in one of two ways. It either returns the requested information, or it
responds with an error message that tells the client why the request could not be completed.

3. Once the server has responded to the client, it closes the connection, discards all state
information about the transaction, and listens for another request.

Web Services

In the world of SOAP, the client is a computer program that asks a server (another computer program)
to execute a method (sometimes called a web service).

In CIC configuration, HTTP requests are received by SOAP Listener—an ISAPI DLL that runs on an IIS web
server. SOAP Listener passes requests to the CIC Notifier subsystem for processing. Notifier alerts the
Interaction Processor subsystem, which in turn starts the handler needed to process the
request. Response data from the handler is passed back to the Listener task for transport to the remote
computer.

In general, SOAP Listener translates HTTP requests into notifications and acts as a gatekeeper to prevent
denial of service attacks.

On the receiving end, the response message is decoded and used by the requesting computer in some
way. This low-overhead approach permits a single server to share information with many clients.

Requests and Responses are XML Documents

In order for the request/response model to work, messages must be formatted in a way that both
computers understand. SOAP uses XML to accomplish this.

What is XML?

XML stands for Extensible Markup Language. XML provides a structured way to define data in plain text
format, so that data can be exchanged between computers. SOAP messages are XML documents, which
are just text files formatted according to some very specific guidelines. (SOAP is the specification that
defines the guidelines used to describe remote procedure calls using XML.) XML provides the syntax
needed to define a markup vocabulary—the tags and attributes needed to describe a particular type of
data. XML files can be created using a simple text editor, such as Notepad. XML is more flexible than
comma-delimited or fixed-length formats, since XML encloses information inside descriptive tags in a
tree-based hierarchy. Before a SOAP request can be transported to another computer, the request is
structured using XML so that the remote system can interpret the request in accordance with the SOAP
specification. Responses from the remote procedure are returned as XML documents.

SOAP uses XML to package the data passed to a method, or received as a response. SOAP
itself is nothing more than a set of rules that define how to describe method calls and
return values using XML syntax. XML merely describes data, without consideration for the
way that the data is processed or presented.

To summarize, SOAP defines conventions needed to invoke the methods of a web service. SOAP tools on
CIC allow web services to be created using Interaction Designer. SOAP uses existing transport protocols
(such as HTTP) to transmit an XML payload to another computer. The payload contains everything that
the remote computer needs to execute a function (arguments and data). Services that understand SOAP
requests can be expected to return XML responses in accordance with the rules of SOAP. The
relationship between SOAP and XML can be expressed this way:

SOAP documents are XML documents that conform to a particular specification, allowing the exchange
of messages. Therefore, to understand SOAP, you need a working knowledge of XML.

What is the relationship between XML and markup languages, such as HTML or SGML?

What is the relationship between XML and markup languages, such as HTML or SGML?

If you use the Internet, you probably know that HTML is the markup language used to create World
Wide Web pages. (HTML stands for Hypertext Markup Language.) HTML and XML are both
descendants of an earlier markup language called SGML (Standard Generalized Markup
Language). SGML is a complicated set of rules that define document structures. XML is a subset of
SGML that does the same thing, using fewer rules. Since XML is a less-complicated derivative of SGML,
XML is more easily implemented on large networks such as the Internet. The primary role of XML is to
define data.

XML delivers the power of SGML without the complexity. XML does not utilize features
that make the authoring difficult or costly. Yet XML preserves most of the flexibility and
richness associated with SGML.

Web browsers use a combined parsing and presentation engine that is tolerant of markup
problems. Sloppy markup in HTML pages is ignored or interpreted in a proprietary way. For example, if
a closing tag is omitted in an HTML document, the browser attempts to guess where the closing tag
should have been. If the browser encounters a tag or attribute that it does not recognize (such as a tag
supported by a different brand of browser), the tag or element is ignored.

The loose, uncontrolled nature of HTML makes it impossible to predict exactly how a web page will be
displayed. Browsers attempt to render something on-screen, however odd, rather than display
validation error messages. Since HTML is presentation-oriented, it uses markup tags for formatting as
well as to define structure. The complexity of HTML formatting can make it difficult to locate data in
HTML documents. HTML was not originally designed to provide precise control over the layout of page
elements. To compensate, savvy page designers use tables, style sheets, and DHTML layers to control
the placement of text and graphics. This creates visually-appealing web pages at the expense of clear-
cut document structures. Complex web pages bury data in a mix of structures in the information
stream. The lack of structural consistency in HTML documents makes it difficult for computer programs
to locate, extract or update data. XML resolves this problem, by demanding that document authors get
structure and syntax right.

XML Parsers

XML documents are often parsed to ensure that they are valid and well-formed.

• A well-formed document conforms to the XML specification.
• A valid XML document conforms to a document structure defined by a schema or DTD

(Document Type Definition). Valid documents are well-formed documents that have a DTD or
schema applied to them.

It is important to note the distinction between parsers and browsers. Parsers validate data. Browsers
display information. SGML and XML are focused on parsing documents rather than presenting them.
Parsing is the computer equivalent of reading a document. A parser is a program that reads in a text file,
breaks it down into component parts, and validates the document using rules in a DTD file. Internet
Explorer offers a built-in parser that you can use to validate XML files. For details, see Viewing XML in
Internet Explorer.

DTD stands for Document Type Definition. DTD's define hierarchy structure and elements that can be
used in an XML document. For links to DTD tutorials, see Recommended Web Links.) The role of a parser
is to identify portions of a document that are invalid in terms of structure or syntax. XML and SGML
parsers ensure that documents are coded correctly.

Viewing XML in Internet Explorer or Edge

The tree structure of XML documents is easy to understand when seen visually. Microsoft's Edge and
Internet Explorer 6 (or later) browsers provide a built-in parser that you can use parse, validate, and
view XML files.

Tip: To open an XML file, drag and drop an XML file from Windows Explorer into your
browser's document window. Or, double-click an .xml filename in Windows Explorer.

The figure below shows the sample movie database (sample1.xml) after it has been opened in Notepad
and Internet Explorer. As you can see, Notepad displays the statements appear as they were entered.
Edge and Internet Explorer display a tree of elements, which makes the content easier to view.

Edge and Internet Explorer automatically add DHTML code so that you can expand or collapse nodes in
the tree. Internet Explorer doesn't allow you to do much besides view XML files. However, if you save
your XML file with an extension of .htm or .html, IE will render the data contained in the XML file.

Advantages of XML over HTML

XML syntax closely resembles HTML; data is enclosed between opening and closing tags. However, XML
is more flexible than HTML:

• XML encodes data in tightly-validated tree structures. Data is easy to locate since its context is
well defined by tags and rules of structure.

• HTML attempts to control the appearance and presentation of data, while XML does not. XML
defines data separately from its presentation. This makes XML data easier to locate and
manipulate.

• XML is a standard data format that permits applications to exchange information across
platforms and operating systems. HTML is markup used to display information in a web browser.

• XML is open and extensible. XML authors can create their own tags. HTML is limited by a fixed
vocabulary that browser developers have agreed to support. In fact, XML has no predefined tags
of its own. New XML tags are defined as needed —to define any type of data using syntactical
rules that that permit browsers and XML Parsers to interpret proprietary tags on the fly. XML
can describe any kind of data, such as a row in a table, a chemical formula, a financial
transaction, a short story, or an object that exposes methods and properties—with equal
finesse.

• Since XML is plain text, it is easily transmitted between computers and through firewalls. XML is
more secure than binary files, since text files cannot be executed directly. Binary files, on the
other hand, can contain malicious computer programs.

• XML is universally compatible. The XML file format is not tied to any particular program,
operating system, database, or network. XML can be used by non-web applications to store
data.

• XML files can be transformed into other types of documents. Transformation is controlled using
XSL style sheets.

Extensible Style Language (XSL) is a specification used to transform XML documents into HTML.
XSL Transformation (XSLT) provides similar functionality that transforms XML data into a
different XML structure. For these reasons, XML is becoming the preferred format for e-
commerce and information exchange between computers of all types. XSL style sheets can
reorder documents, display or hide information, or apply formatting, among many other things.
XSL uses patterns and logical operations to determine which parts of a document tree it should
transform. XSL works somewhat like a programming language—it can test for equality and
perform processing based upon the results of a test.

Structure of an XML file

An XML file is just a structured text file. The best way to understand XML is to look at example
files. Listing 1 below contains three records from a movie database. Each record contains two fields:
the title of a movie, and its genre.

The example file is formatted using blank lines, tabs and white space that make the file easier to
read. In practice, those items are ignored by XML parsers. Likewise, bold text and line numbers in the
listing are for illustration purposes only. Actual XML files do not contain line numbers.

Listing 1: Sample XML File

1 <?xml version="1.0"?>

2 <movies>

3 <movie>

4 <title>The Ghost and Mr. Chicken</title>

5 <genre>Comedy</genre>

6 </movie>

7 <movie>

8 <title>Gone with the Wind</title>

9 <genre>Drama</genre>

10 </movie>

11 <movie>

12 <title>ThunderBall</title>

13 <genre>Adventure</genre>

14 </movie>

15 </movies>

XML Declaration

Line 1 contains a processing instruction known as the XML declaration. This statement tells parsers that
the file contains XML. The remainder of the file is composed of XML elements. Each element consists of
a start tag and an end tag. XML data is just information that appears between tags.

The terms tag and element are often used interchangeably. A tag is an identifier that defines
something. An element is an instance of a set of tags. In our example, <title> is a tag, and <title>Gone
with the Wind</title> is an element. Elements are the basic building blocks of HTML files. Elements can
be nested inside of other elements.

Rules that govern tags

Tags are governed by a few basic rules:

• Tag names are case-sensitive. <movie>, <Movie>, and <MOVIE> are not equivalent. Attribute
names are also case-sensitive.

• Tag names must begin with an alphabetic character, an underscore, or a colon.
• Tag and attribute names cannot begin with "xml", which is reserved.
• All tags must be closed. A start tag must be closed by a corresponding end tag. Empty elements

with no attributes can use a backslash as a shortcut for the end tag (e.g. <movie/> is equivalent
to <movie></movie>.

The Root Element

Line 2 defines the root element. Since an XML document is a tree of elements, each document has a
single root element that denotes the beginning and end of the XML statements in the file. In the
example, the root element begins with a start tag <movies> and is closed by an end tag </movies>. All
other elements are nested inside the root element.

Child Elements

Line 3 identifies <movie> as a child of the <movies> root element. Parent-child relationships are
common in XML files. Parent elements can have many children. All elements must be properly closed,
meaning that each element has a start tag and an end tag. Likewise, tags must be balanced. The close
tag of a child cannot appear after the close tag of its parent. For example:

<title>ThunderBall<genre>Adventure</title></genre> is incorrect.

<title>ThunderBall<genre>Adventure</genre></title> is correct.

Line 4 contains some data (the title of a movie) between tags that identify the data.

Line 5 contains a different data item. In this case, it is a movie category between genre tags.

Line 6 closes this movie element.

This basic structure is repeated in lines 7 through 14, which define two more records.

Line 15 contains the closing tag for the root element.

Structure of SOAP Messages

Structure of SOAP Messages

SOAP messages are constructed
using a framework that describes
what is in a SOAP message, and how
it should be processed. This is
known as the SOAP envelope.

SOAP messages may contain
encoding rules, which express
instances of application-defined
data types. Remote procedure calls
and responses are also described in
a SOAP message. As mentioned
earlier, there are two types of SOAP
messages:

• Request messages ask a
remote process to perform
some sort of processing.

• Response messages are
replies from a remote
process that return data or
an error message that
indicates why the request
could not be processed.

The payload contains data in XML
format that is passed to or from a
function. Request payloads contain
everything needed to execute a
function, including data and
arguments passed as parameters.
Response payloads contain the
values that are returned from a
function. SOAP uses XML to express
payload information accurately and
concisely. Every SOAP message has a
main envelope section, which can
contain header and body sub-
sections.

Envelope Section

The envelope is always the outer most element. Everything else in a SOAP message appears inside
SOAP-ENV tags. The envelope in Listing 2 is empty—it doesn't contain any header or body tags.

Listing 2: SOAP Envelope Elements

1 <SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"

2 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

3 </SOAP-ENV:Envelope>

1. Line 1 of the envelope refers an external XML namespace (xmlns) that defines elements and
attributes that can appear in the envelope (such as header or body elements).

2. Namespacesresolve collision issues by associating XML attribute and element names with a
specific context, or "namespace". A namespace is an identifier that helps computer programs
determine whether identically named elements refer to the same type of data. Using
namespaces, a program can determine that a data element named "Grade" in the "Schoolwork"
namespace is different from an element called "Grade" in an "Egg Quality" namespace.

3. Most SOAP envelopes refer to XML schema defined by the W3C. It is very common to see
http://schemas.xmlsoap.org/soap/envelope/ as the namespace reference in a message
envelope.

XML Schema are the successor to DTDs for XML. XML schema describe method calls, and can
recognize and enforce data-types, inheritance, and presentation rules. A schema can be part of
an XML document or can be referenced as an external file.

4. Line 2 refers to encodingStyle schema that describes basic data types (Booleans, Integers,
Strings, etc.) that can be passed to a remote procedure call. SOAP messages typically define
encoding rules using the W3C schema at http://schemas.xmlsoap.org/soap/encoding/.

5. Line 3 closes the envelope.

Header Section

As mentioned earlier, the envelope can contain header and body sections. These are defined using
Header and Body elements. Listing 3 shows a SOAP message with empty Header and Body sections.

Listing 3: Header and Body Sections of a SOAP Envelope

1 <SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"

2 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

3 <SOAP-ENV:Header>

4 </SOAP-ENV:Header>

5 <SOAP-ENV:Body>

6 </SOAP-ENV:Body>

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/

7 </SOAP-ENV:Envelope>

As you can see, lines 3-4 define the Header section. Lines 5-6 define the Body. Other independent
elements can optionally be defined inside the envelope, but for purposes of this discussion, we do not
need to be concerned with independent elements. Refer to the W3C SOAP Specification at
http://www.w3.org/TR/SOAP/ for more information about independent elements.

The Header section can contain meta data about the message. Meta data is "data that describes data".
A SOAP message does not have to contain a Header. Header elements make it possible to extend the
base SOAP protocol, to accommodate needs that the SOAP specification does not include.

For example, Header elements might maintain session information between a server and a client, or
might contain authentication information about a transaction. A Header can contain any number of
namespace-qualified child elements, each of which extends the default protocol in some way. Each
header element provides extra content for processing the Body of the message.

Each Header element may be annotated with a "mustUnderstand" attribute, which indicates whether or
not the element is mandatory. When "mustUnderstand" is True for an element, the server that
processes the message must know how to interpret that element. If it doesn't, it must reject the
message. Headers that do not have a "mustUnderstand" attribute, or which have this attribute set False,
are considered to be optional, meaning that the recipient server is allowed to process the message as
best it can.

Body Section

The most important part of a SOAP message is the Body section, since it contains the message's payload.
In a request message, the Body defines the method to execute, and parameters that must be passed to
it. The Body of a response message contains references to the method called, and return values from the
method. If an error occurs, the response contains information about the fault. To better understand
these concepts, let's look at some actual request/response messages. The request message in Listing 4
invokes a simple method that adds two numbers. Listing 5 contains the response from the web service.

Request Messages

Listing 4: Request to Invoke Add Method

1 <SOAP-ENV:Envelope

2 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

3 SOAP-4
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

5 <SOAP-ENV:Body>

6 <m:Add xmlns:m="uri:my-calculator">

7 <Parameter1>2</Parameter1>

8 <Parameter2>3</Parameter2>

9 </m:Add>

http://www.w3.org/TR/SOAP/

10 </SOAP-ENV:Body>

11 </SOAP-ENV:Envelope>

The m:Add method name element in line 6 contains the name of the method (Add) we wish to call, and
the namespace it is found in (uri:my-calculator). The URI (Universal Resource Indicator) specifies which
computer offers an Add method web service.

Lines 7-8 define two arguments (Parameter1 and Parameter2) that the Add method requires. In this
example, the numbers to be added are 2 and 3.

Line 9 closes the method name element.

Response Messages

The response from the computer at uri:my-calculator is listed below. This response message contains
return values from the Add method. By convention, "Response" is appended to the name of the method
called. However, the format of the method name can also be defined using WSDL.

Listing 5: Response from the Add Method

1 <SOAP-ENV:Envelope

2 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

3 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

4 <SOAP-ENV:Body>

5 <m:AddResponse xmlns:m="uri:my-calculator">

6 <Result>5</Result>

7 </m:AddResponse>

8 </SOAP-ENV:Body>

9 </SOAP-ENV:Envelope>

Line 5 identifies the remote procedure call. The Result tag in line 5 contains the sum of 2+3, which is 5.
Note that the response message does not contain any of the data passed to call the function. Responses
contain a return value from the function, or a fault message that indicates why the function call failed.

Fault Messages

When a message is rejected, the server generates a Fault, or error message. Faults are commonly
caused by unrecognizable header fields, messages that cannot be authenticated, or problems that
occurred when the server attempted to invoke a method or process the message.

Listing 6: A Typical Fault Response Message

<S:Envelope xmlns:S='http://schemas.xmlsoap.org/soap/envelope/'>

 <S:Body>

 <S:Fault>

 <faultcode>S:Server</faultcode>

 <faultstring>S:Server</faultstring>

 <detail>

 <e:mydetails xmlns:e="http://foo.com/detail">Some Error
Message</e:mydetails>

 </detail>

 </S:Fault>

 </S:Body>

</S:Envelope>

CIC's SOAP Components

CIC's SOAP Components

The SOAP components in a Customer Interaction Center environment are:

1. Interaction Designer SOAP Components: When Interaction Designer is installed, SOAP tools,
SOAP Tool help, and a SOAP message trace utility are installed to the
C:\I3\IC\Install\Admin\IC_Admin directory on the CIC server.

SOAP tools are implemented in a dynamic link library named SOAPToolsIDA.DLL. When
Interaction Designer starts up, it adds the tools defined in this DLL to Interaction Designer's tool
palette. SOAP Tools are always installed with Interaction Designer. See SOAP Tools in Interaction
Designer for more information. Context-sensitive online help for SOAP tools is available in
Interaction Designer. Soap help topics are displayed when a SOAP tool has focus in Interaction
Designer and the F1 key is pressed.

2. SOAP Tracer Utility: (SOAPTracerA.exe) is optionally installed with Interaction Designer when
the "SOAP" option is selected. It permits users to "spy" on SOAP notification traffic. Soap Tracer
displays request and response packets in a list and allows inspection of request and response
payloads. For usage information, see SOAP Tracer Utility later in this section.

3. The SOAP ISAPI Listener: Task is responsible for parsing incoming SOAP requests, dispatching
requests to the appropriate method, and packaging return values into outgoing SOAP responses.
This process runs on an IIS Server. See SOAP ISAPI Listener Task for IIS later in this section.

4. SOAP Notifier COM Objects issue SOAP notifications from automation compatible applications.
These components provide a high-performance method of initiating handlers without incurring
the performance penalty of HTTP-based Listener operations. Third-party applications created
using the SOAP Notifier COM components can directly create and forward packets to Interaction
Processor, bypassing the need to create packets received using HTTP and the Soap Listener task.
See SOAP Notifer COM Objects later in this section.

SOAP Tools in Interaction Designer

This topic summarizes SOAP-related tools in Interaction Designer that create handlers to process SOAP
requests or responses. For additional information, see Appendix B: SOAP Tools.

Initiator Tools

SOAP Initiator

This initiator triggers if the "Notification Event" of the request matches a specified string. The
Notification Event on which the Initiator triggers is specified in the property dialog.

Request Tools

SOAP Get Request Info

Queries some information from the request handle.

SOAP Abort Request

Aborts the request. Aborting a request is useful if a SOAP request handler is registered as a
Monitor handler.

SOAP Get Transport Info

Returns an XML document containing transport specific (header) data. It allows the client to
include any kind of out-of-band data in the request.

SOAP Expects Response

Takes a different exit path depending on whether the SOAP request requires a response (YES) or
not (NO).

SOAP Parse Request Payload

Parses the payload of the request into an XML document.

SOAP Send Response

Sends the specified payload as response to the sender of the request. To support transport
specific features, the "Transport Control Data" argument takes an XML node whose content will
be sent back to the client. It can be used to send transport specific out-of-band data to the
client.

Payload Processing Tools

SOAP Create Envelope

Creates a new SOAP envelope.

SOAP Get Body

Retrieves the Body element from the SOAP envelope. A body must exist. If it can't be found, the
tool exits through "Failure" and attaches error information to the envelope.

SOAP Get Body Element

Retrieves the first body element that matches the given base name and namespace.

SOAP Add Body Element

Adds an entry to the body of the SOAP envelope.

SOAP Query Encoding Style

Matches a space separated list of URIs against the "encodingStyle" attribute of the given
element. If the element doesn't have an ‘encodingStyle' attribute, the parent of the element is
checked and so on, until an element with an "encodingStyle" attribute is found. If that attribute
contains any of the specified encoding style URIs, the tool returns through "Found" and returns
the style that was found.

SOAP Get Header

Retrieves the header element from the SOAP envelope if it has one.

SOAP Get Header Element

Retrieves the first header element that matches the given base name and namespace. Returns
the first element in the header if neither a name nor namespace is given. Takes "Not Found" exit
if the envelope doesn't have a header or the element can't be found.

SOAP Get Header Elements

Returns iterator to a list of header elements filtered by the given arguments. Takes the "None"
exit if envelope has no header or none of the header elements matched the filter criteria.

SOAP Add Header Element

Creates a header element and adds it to the given envelope. If the envelope does not have a
header, one is inserted before the Body element.

SOAP Get Fault

Retrieves fault information from the SOAP envelope. If there is no style="color:
#0e5470;"><Fault> element in the envelope, the "No Fault" exit is taken and NULL elements and
empty strings are returned.

SOAP Set Fault

Adds a style="color: #0e5470;"><Fault> element to the envelope or replaces an existing one.

SOAP Create Fault Response

Copies the request envelope and replaces all children of the style="color: #0e5470;"><Body>
element with a single style="color: #0e5470;"><Fault> element. It combines the functionality of
the "SOAP Create Envelope" tool with the functionality of the "SOAP Set Fault" tool.

SOAP Get RPC Parameter

This is a convenience tool for cracking RPC requests. It retrieves a parameter element (child)
from the first element in the <Body> element (method in an RPC request). It returns the first
element that matches all of the specified arguments.

SOAP Add RPC Parameter

This is a convenience tool for composing RPC requests or responses. It adds a parameter
element to the first element in the body of the envelope, which represents the method in RPC
requests. Use the XML tools to add complex data (not just a string) to the parameter by
manipulating the returned "Parameter Element" node.

SOAP Get RPC Method Info

This is a convenience tool for cracking RPC requests. It retrieves the first child element of the
SOAP <Body> element (Method element in RPC requests). It returns a collection containing the
child elements of the method, which constitute the method arguments.

SOAP Get Next RPC Parameter

This tool returns the element node at the current iterator position and returns an iterator to the
next position.

SOAP Create RPC Response

This is a convenience tool for composing the response envelope for an RPC request. It copies the
source envelope and replaces the method element in the body with an element that has the
same name but "Response" added to its name. It also adds a <Result> element as child of the
method element.

SOAP Set Element Type

In SOAP, the type of an argument or the return value is specified by the service description and
doesn't need to be included in the payload. However, the service may define the type as
xsd:anyType, for VARIANT types. This tool allows you to include the type in the argument.

SOAP Create Array

Turns an element, for example an RPC parameter, into a SOAP array. The array is created for
values supplied as list of strings or just a number of empty elements that can be populated with
complex data.

Invocation Tools

SOAP HTTP Request

This tool issues an HTTP request to the specified URL with the SOAP request envelope as
payload. The response body is parsed and returned as response envelope.

Helper Tools

SOAP Base64 Encode

Converts a supplied UNICODE string to the specified character set (default = UTF-8) and encodes
the resulting data into a Base64 string. Characters that cannot be translated to the destination
character set will be represented as ‘?'. Wide character sets, such as UTF-16 are currently not
supported.

SOAP Base64 Decode

Decodes the base64 encoded string into the binary representation and converts it to UNICODE
based on the specified character set.

SOAP Base64 Encode File

Reads the specified file as binary data and encodes it into a base64 string. This tool can be used
to send any kind of data through SOAP requests. For example, you could encode a wave file in a
SOAP message.

SOAP Base64 Decode To File

Decodes the base64 encoded string into the binary representation and writes the data to the
specified file as binary data.

The SOAP Tracer Utility

The SOAP Tracer Utility

SOAP Tracer is used to debug SOAP requests and responses. It displays notifications exchanged between
the client (SOAP Notifier COM or ISAPI listener) and the CIC server. It spies on SOAP notification
messages. It records and displays request and response packets in a list and allows inspection of request
and response payloads. Filtering for particular SOAP actions or clients is not supported in the current
release, but may be added in the future. SOAP Tracer is optionally installed on the CIC server when
Interaction Designer is installed—if the "SOAP" option is selected. It can be used from any machine that
has access to a CIC server through a Notifier connection. However, SOAP Tracer is unrelated to
Interaction Designer. It is also unrelated to ISAPI Listener.

IMPORTANT—Do not run SOAP Tracer for extended periods of time. It can consume a lot of memory
and may degrade performance of CIC.

Starting SOAP Tracer

The default shortcut created under Program Files > PureConnect > SOAP Tracer is:

C:\I3\IC\Install\Admin\IC_Admin\SOAPTracerAD.exe /notifier=localhost

To run this utility, press the Start button, then select Programs > PureConnect > Soap Tracer. SOAP
Tracer optionally accepts the command line arguments listed below.

Command Line Arguments

/NOTIFIER=<hostname>

Hostname or IP address of the Notifier server. Default: default Notifier server of the user.

/USER=<username>

User name of the CIC user. Default: current user

/PASSWORD=<password>

Password of the CIC user.

/TEMPDIR=<directory>

Directory in which to store the temporary files generated by the utility. Default is the system's
TEMP directory.

/STARTCAPTURE

If this argument is specified, the SOAP Tracer immediately starts capturing SOAP notifications. If
not specified, the capture must be started by selecting Start Capture from the Tools menu, or by
pressing the corresponding tool bar button for this command.

/KEEPTEMPFILES

By default, temporary files used to store the SOAP payload are deleted when the traces are
cleared or the utility is exited. When this switch is specified, SOAP Tracer won't delete its
temporary files automatically.

SOAP Tracer's User Interface

The SOAP Tracer window is divided into three panes. Users select a message in the top pane to display
corresponding request and response messages in the other panes.

The Request List Pane

The top pane is the Request List. It displays information about SOAP requests. such as the name of the
client who issued the request, the time, and whether or not the request succeeded. This pane contains
the following columns:

Request Timestamp (UTC)

Date and time in UTC when request notification was recorded.

Initiator Event

Notification Event of the request (often same as SOAP Action).

SOAP Action

SOAP Action of the request.

Client

Name of the client issuing the request.

Client ID

Dynamic identifier of the client.

Request ID

Identifier of the request (generated by and scoped to client).

Request Size

Size of the request payload (SOAP envelope) in bytes.

Result Code

Result code returned by the server.

Succeeded

Request successfully processed

Failed

Request failed, server returned SOAP fault

Unhandled

Request was not handled by the server

Response Timestamp (UTC)

Date and time in UTC when response notification was recorded

Duration

Difference between Response Timestamp and Request Timestamp

Response Size

Size of the response payload data in bytes.

Key Term—A payload contains data in XML format that is passed to or from a
function. Request payloads contain everything needed to execute a function,
including data and arguments passed as parameters. Response payloads contain
the values that are returned from a function.

The Request Payload Pane

The Request Payload pane displays XML payload data that was sent to the handler for the selected
request.

The Response Payload Pane

The Response Payload pane panes display payload data that was sent back to the client by the handler.

Menu Commands

File > Exit

Closes Soap Tracer.

View > Transport Info Data

Displays a dialog containing the transport info data of the request. This option is enabled if the
SOAP request notification included transport information data.

View > Transport Control Data

Displays a dialog containing the transport control data of the response. This option is enabled if
the SOAP request notification included transport control data.

View > Follow Requests

If checked, the selection in the request list will follow the recorded requests and always select
the most recent one.

View > Toolbar

Hides or displays toolbar icons.

View > Status Bar

Hides or displays the status bar.

Tools > Start Capture

Starts recording the SOAP notification traffic.

Tools > Stop Capture

Stops recording the SOAP notification traffic.

Tools > Clear View

Clears the list of recorded SOAP notifications.

Tools > Settings

Displays dialog used to configure the application. This feature is disabled in the current release.

Help > About SOAPTracer…

Opens a dialog that displays copyright information.

Toolbar

Some SOAP Tracer commands have tool bar equivalents.

Tool bar icons in SOAP Tracer.

SOAP ISAPI Listener Task for IIS

SOAP ISAPI Listener translates HTTP SOAP packets into notifications and sends them to the CIC server.
The SOAP ISAPI Listener must be installed on a machine that has IIS installed.

What is a Listener?

A listener receives incoming HTTP messages that contain SOAP requests for some type of service. It
parses these messages, decides whether to process the request (based upon threshold values and filter
configurations), and dispatches the request to the appropriate method for processing. If the service
returns a response, the listener packages the response into an HTTP payload, and sends that back to the
client. A listener also handles requests for WSDL information about web services.

The SOAP ISAPI Listener looks at incoming SOAP requests, decides whether requests should be
forwarded to CIC to invoke a handler, and forwards appropriate requests to CIC's Notifier subsystem,
which in turn calls Interaction Processor to invoke the handler associated with the initiator specified in
the incoming message. SOAP ISAPI listener and packages return values from handlers into outgoing
HTTP responses, and sends them to the client. If the listener decides not to forward a request to CIC for
processing, it returns a fault message (SOAP and/or HTTP) to the requesting client application.

What is ISAPI?

The SOAP ISAPI Listener is sometimes called the SOAP ISAPI DLL, since it is a dynamic link library
developed in conformance with Microsoft's Internet Server Application Programming Interface (ISAPI).
ISAPI allows developers to extend the functionality of Microsoft's Internet Information Server (IIS). The
component that implements the ISAPI Soap Listener task is I3SOAPISAPIU.DLL. This DLL is installed by
the Interaction Center SOAP Listener Install to the IIS server of your choice. It translates HTTP requests
into notifications and acts as a gatekeeper to prevent denial of service attacks. An ISAPI DLL is not a
COM DLL. To invoke an ISAPI DLL, it must be explicitly referenced in a HTTP header. For example:

http://www.foo.com/virtual_directory_name/I3SOAPISAPIU.DLL

The virtual directory name is optional, so long as the server can resolve the location of the DLL.

What is an endpoint?

SOAP invokes methods at HTTP endpoints. An endpoint is a URL that uniquely identifies a namespace
URI (Universal Resource Indicator), and the name of the method to execute (known as the NCName).
Consider the following endpoint:

uri:my-calculator#Add"

The URI namespace (my-calculator) identifies the code module that contains the method to be called
(Add), just as an interface name scopes a method in Java, CORBA, or COM. The namespace and the
method name are separated by a pound sign.

When a SOAP request is transported to invoke the method, the endpoint name is passed in the
SOAPMethodName header of the HTTP POST request. Consider the following sample HTTP header:

POST /objectURI HTTP/1.1

Host: www.foo.com

SOAPMethodName: urn:foo.com:my-calculator#Add

Content-Type: text/xml

Content-Length: nnnn

The HTTP header indicates that the Add method (from the urn:foo.com:my-calculator namespace)
should be invoked against the endpoint identified by http://www.foo.com/objectURI.. The rest of the
HTTP request is an XML document that contains additional information needed to invoke the request,
such as parameters passed to the method. The server-side software that receives the request (e.g. the
SOAP ISAPI Listener) is responsible for processing the request. Unlike other RPC protocols, SOAP doesn't
define specific actions that must occur when a request is received. It leaves the implementation details
to the process running at the endpoint. See http://www.w3.org/TR/REC-xml-names/

SOAP Notifier COM Objects

SOAP Notifier COM is a set of software components that allow custom applications to invoke handlers.
SOAP Notifier COM objects issue SOAP notifications from automation compatible applications.
Microsoft's .NET framework makes it possible for programmers to invoke a web service as if they were
invoking a method of an object. SOAP Notifier COM components provide a high-performance method of
calling handlers without incurring the performance penalty of HTTP-based Listener operations. Third-
party applications created using the SOAP Notifier COM components can directly create and forward
packets to Interaction Processor, bypassing the need to create packets received using HTTP and the
Soap Listener task. These packets that are identical to those created by SOAP ISAPI Listener. However,
the process is faster than HTTP-based Listener operations.

SOAP Notifier COM is appropriate for Windows client workstations that can run COM applications. It is
not appropriate for operating systems (Linux, for example) that do not support COM. SOAP Notifier
COM Components Setup registers SOAP Notifer COM API components on desktop PCs used to develop
or run SOAP Notifier COM API applications. Soap_Notifier_COM_API_DG.chm is the SOAP Notifier COM
API Developer's Guide. It describes interfaces, methods, and properties of the SOAP Notifier COM API.
You will find this publication in the System APIs section of the PureConnect Documentation Library.

ISoapConnector: the MSSOAP Notifier Connector

ProgId: ININ.MSSOAPNotifierConnector

The SOAP Notifier COM API provides a component named ISoapConnector that is used to initiate SOAP
handlers. Programmers can invoke a web service as easily as invoking a method on an object. The VB
example below shows how to use the transport. It is assumed that a WSDL file with the service
description exists, since this is required for MSSOAPLib.SoapClient. Instead of the SoapClient, you may
use the MSSOAPLib.SoapSerializer and MSSOAPLib.SoapReader objects with any object that uses a
ISoapConnector.

Dim objTransport As New SOAPNotifierCOMLib.SOAPNotifierTransport

http://www.w3.org/TR/REC-xml-names/
https://help.genesys.com/cic/desktop/system_apis.htm
https://help.genesys.com/cic/desktop/welcome_page.html

objTransport.Connect "<Notifier>", "<AppId>", "<user>", "<password>",
"<ClientName>"

Dim objClient As New MSSOAPLib.SoapClient

objClient.ClientProperty("ConnectorProgID") = "ININ.MSSOAPNotifierConnector"

objClient.mssoapinit "<WSDL filename or URL>"

objClient.ConnectorProperty("Transport") = objTransport

Result = objClient.<method>(<arguments>...)

Properties

SOAP Notifier Connector supports the following properties:

Transport

Transport object to be used for server communication. Must be set before the first invocation.

SOAPAction

SOAP Action used in the request. If not defined (empty string), uses value from the WSDL file.

InitiatorEvent

Initator Event (notification event) of the request notification. If not specified or as default, the
SOAPAction is used. Changing the SOAPAction also resets this property, unless the
PreserveInitiatorEvent property is set. If the SOAPAction has never been set or is an empty
string and the value from the WSDL file is used, the InitiatorEvent is reset after each request
(again, unless PreserveInitiatorEvent is True).

PreserveInitiatorEvent

If True, changing the SOAPAction does not change the InitiatorEvent property.

RequestTimeout

Maximum amount of time to wait for response in milliseconds. Value < 0 = infinite. Default =
60000 (1 minute).

TransportInfo

Write only. Transport info data. Must be object implementing IStream.

TransportCtrl

Read only. Transport control data, returns IUnknown of an object implementing IStream. Can
only be retrieved after invocation until the object using the connector calls the ‘BeginMessage'
method of the connector (usually, as part of the next invocation).

ResponseObject

Read Only. Returns the ISOAPResponse object resulting from the request. Can only be retrieved
after invocation until the object using the connector calls the ‘BeginMessage' method of the
connector (usually, as part of the next invocation).

Related Topics

Appendix C: Structure of IP Notification Messages

Install and Configure SOAP ISAPI Listener

Install and Configure SOAP ISAPI Listener

The components of SOAP follow the client/server model. Some components are installed when
Interaction Designer is installed on the CIC Server. Other components are installed on IIS web servers
and client PCs. This section explains how to install and configure SOAP Tools, SOAP Tracer, SOAP
Listener, and Soap Notifier COM components.

• SOAP Tools Installation: When Interaction Designer is installed (as part of the CIC Admin setup),
new SOAP tools are added to Interaction Designer's tool palette. SOAP tools are implemented in
a DLL (SOAPToolsIDA.DLL) that is installed with Interaction Designer. Appendix B in this
document also contains a summary of each SOAP Tool.

• SOAP Tracer Installation: The Soap Tracer Utility (SOAPTracerA.exe) is optionally installed if the
"SOAP" option is selected during installation of Interaction Designer.

• SOAP ISAPI Listener Installation: The Interaction Center SOAP Listener Install installs the SOAP
Listener Task on an IIS server. The SOAP Listener task is an ISAPI DLL. Installation requires
preplanning on your part to address security and configuration issues, and some post-
installation work to customize the default SOAP filter configuration. The SOAP ISAPI DLL must be
installed on a server running Microsoft Internet Information Server (IIS), version 5 or later.

Installation and configuration pre-planning

This section describes issues that SOAP implementers must resolve before installing ISAPI SOAP Listener
on an IIS server. Security issues are particular important to consider if you plan to pass SOAP requests
across the Internet.

1. Select a server to host SOAP ISAPI Listener.

The SOAP Listener task is an ISAPI DLL that you must install on a computer running Microsoft's
Internet Information Server (IIS) service. SOAP Listener uses IIS (version 5 or later) solely for
HTTP operations. It does not consume other IIS services. You can install this task on a dedicated
IIS server, or on a CIC server that is running IIS. Before choosing a platform, you should carefully
consider security, performance, and capacity issues.

SOAP Listener will work if it is installed on a CIC server running IIS. Theoretically, this could
improve performance by eliminating latency between CIC and a dedicated IIS server. In practice,
performance could be degraded if the CIC server becomes too highly tasked, and this
configuration could compromise network security. As a rule of thumb, do not install SOAP ISAPI
Listener on a CIC server unless:

Port 80 HTTP traffic is tightly controlled (e.g. SOAP will be used exclusively for interactions
between servers inside a firewall). This is appropriate for some corporate Intranets. Use a
different port than 80 (e.g. 8080) that is blocked by the firewall. SOAP requests will not be
received from the Internet, or use another port. The CIC server has the capacity to run IIS
without degrading performance.

If SOAP requests will be received from the Internet, you should install SOAP ISAPI Listener on an
IIS server in a DMZ (Demilitarized Zone) between two firewalls. This can be an existing CIC/web
server or a dedicated web server.

2. Open port 2633 on the firewall between the DMZ and the Intranet on which the CIC server is
located, so that Notifier traffic can pass between the CIC server and the SOAP listener. Do not
open port 2633 to the Internet.

What is a Demilitarized Zone?
In an Internet-connected world, any public access server, such as a web server that
connects outside of an internal network is unprotected against hacking. A public
access server can expose the rest of a network to potential intrusion.
Demilitarized zones (DMZ) reduce security risks by using multiple firewalls to
delimit an internal network from publicly connected devices, such as web servers.
A DMZ configuration protects both public servers and the internal network. The
first firewall isolates essential Internet services (web, email, DNS, etc). The second
firewall protects the internal network.
A DMZ is not the only solution that you might employ to protect your network. It is
completely acceptable to use different security measures. The exact method is up
to you—be reminded that if you connect a server to the outside world, you must
manage the risk that your internal network might be penetrated through a public
server.

3. Apply service packs and hotfixes to IIS.

Network security is a topic outside the scope of this paper. However, we strongly recommend
that you keep server operating system and IIS software up-to-date. Apply Microsoft service

packs and hot fixes regularly. Hackers frequently exploit known security holes that you can close
by applying free software updates. You can automate this process to a limited extent. For
example, Microsoft's HFNETCHK is an executable that runs on your server. It retrieves an XML
file that contains information about security hot fixes that your system might need. Browse
Microsoft's web site (http://www.microsoft.com/security) for security bulletins, upgrades and
other information. As a rule of thumb, you should not install services that you do not need.
Subscribe to "NTBugtraq" or a similar discussion list. This mailing list discusses security exploits
and security bugs in Windows NT, Windows 2000, and Windows XP plus related applications. To
sign up, visit http://www.ntbugtraq.com/.

4. Decide how to configure SOAP Listener to prevent DoS Attacks

Denial of Service (DoS) Attacks are attempts to flood a server with false requests for
information, with the goal of overwhelming the system and ultimately crashing it. Not much can
be done to prevent a denial of service attack. However, you can minimize the impact of DoS
attacks by supplying the a couple of threshold values at installation time, and by customizing an
ISAPI filter after installation is complete.

Default Request Timeout

Since DoS attacks can degrade performance of the CIC Server, ISAPI Listener can be configured
(at installation time) to return a fault message (Server.RequestTimeout) if the CIC Server fails to
respond within a specific time interval.

Before installing SOAP Listener, decide what value to enter into the Default Request Timeout
field. This value sets the maximum amount of time in milliseconds that ISAPI Listener will wait
for the CIC Server to respond to a SOAP request. When this interval is exceeded, ISAPI Listener
sends a fault message to the requester. The default is 60,000 milliseconds (1 minute). If your IIS
server has a fast processor, and is dedicated to IIS, you may be able to reduce the default value.

This value sets the default timeout for all SOAPActions. Following installation, you can assign
timeout values to specific SOAPActions, by editing a configuration file. For details, see Step 2:
Set SOAPAction-Specific Timeout Values in the Post-Installation Procedures section of this
document.

Maximum SOAP Payload Size

SOAP ISAPI Listener uses a threshold setting named Maximum SOAP Payload Size to limit the
size of incoming SOAP messages. By default, the maximum SOAP payload Size is 128 KB. Larger
messages are not forwarded by the Listener to the CIC Server for processing. Based upon the
size of data passed to your handlers, you may be able to reduce this value significantly. This
helps minimize the impact of denial of service (DoS) attacks.

Maximum Pending Requests

The Maximum Pending Requests threshold limits the maximum number of SOAP requests that
the CIC server should process concurrently. It helps to think of this as the maximum number of

http://www.microsoft.com/security
http://www.ntbugtraq.com/

pending responses that SOAP Listener will wait for at any given time, since SOAP Listener waits
for a response to each request that it sends to CIC.

If Listener finds itself waiting for more responses that are allowed, it stops sending additional
inbound request messages to the CIC Server until the number of pending requests falls below
the threshold. SOAP ISAPI Listener does not queue unprocessed requests. It fails unprocessed
requests with a fault message (Server.TooBusy).

Process Isolation Level

There is one last setting that you must consider before installing SOAP ISAPI Listener, and that is
the level of process isolation (Low or High) that you wish to assign to the ISAPI Listener DLL.
Process isolation protects the main IIS process against application faults—in this case, against
potential failure of the ISAPI Listener DLL .

Process Isolation provides an additional layer of durability for your Web server. Low process
isolation provides the best performance. High process isolation offers more protection against
possible faults in the Listener application (unlikely). Low is the default.

Install SOAP Listener

If at this point, if you have IIS running with the latest service packs and hot fixes, behind an acceptable
firewall configuration, and have formulated threshold values, you are ready to install SOAP Listener. This
procedure explains how to run the SOAP Listener Setup to install, register, and configure the SOAP
Listener task on an IIS server. The Soap Listener task is an ISAPI DLL that translates HTTP requests into
notifications. It acts as a gatekeeper to prevent denial of service attacks. Complete this procedure at
your dedicated IIS Server or CIC Server running IIS. Installation requires pre-planning on your part to
address security and configuration issues. If you have not read the Installation and configuration pre-
planning section, we strongly recommend that you do so before performing this procedure.

1. Download the CIC 2018 R1 or later .iso file from the Genesys Product Information site at
https://my.inin.com/products/Pages/Downloads.aspx.

2. Copy the .iso file to a file server (non-CIC server) with a high bandwidth connection to the
server(s) on which you will be running the CIC 2018 R1 or later installs.

3. Mount the .iso file and share the contents to make them accessible to the server(s) on which
you will be running the CIC 2018 R1 or later installs.

4. Navigate to the \Installs\Off-ServerComponents directory on the file server.
5. Copy the SOAP Listener .msi file, for example, SOAPListener_2018_R1.msi, to the server on

which you plan to run this install and double-click to launch it.

The welcome page appears.

6. Press Next to proceed past the welcome screen. Then press Next a second time to accept
installation of default features.

7. Supply user name, domain password, and domain for a user account with administrative
privileges on the CIC server. Then press Next.

https://my.inin.com/products/Pages/Downloads.aspx

8. Type the name of the CIC server. Then press Next.
9. Supply values as indicated below:

Default Request Timeout (in seconds)

Enter the number of seconds that the ISAPI Listener should wait for the CIC Server to respond
(to a SOAP request) before timing out and returning a fault message. The default value is 0
seconds. Press Next to proceed.

Maximum Pending Requests

Specify the maximum number of SOAP requests that your CIC server should handle concurrently
during peak periods. This helps protect your server from denial of service (DoS) attacks. When
this value is exceeded, additional requests will be denied.

Maximum SOAP Payload Size (in KB)

Specify the maximum size (in kilobytes) of SOAP payloads sent by the SOAP Listener to the CIC
Server. Larger XML payloads will not be forwarded, to minimize the risk of denial of service
(DoS) attacks.

10. Press Next to proceed. The next screen prompts for a location where log files will be stored.
Accept the default path, or navigate to a different path. When you are finished, click Next.

11. Click Install to begin installing files.
12. Press Finish to exit Setup.
13. Click Yes to restart.
14. For the SOAP Listener machine to receive updates from the Interactive Update Provider on the

CIC Server, you must run the Interactive Update Client install following the SOAP Listener install.
The install will prompt for the Interactive Update Provider Server (CIC Server) name or IP
address.

Post-installation procedures

Following installation of ISAPI SOAP Listener, you should complete additional security steps to defend
against DoS Attack. Specifically, you should limit requests to known SOAPActions, and to assign timeout
values to individual SOAPActions. You will modify the default ISAPI filter configuration file. The relative
path to this file is ..\soaplistener\filter\I3SOAPISAPIConfig.xml. The SOAP ISAPI endpoint listener uses
I3SOAPISAPIConfig.xml to filter incoming message requests. This file acts as a gatekeeper. It affects
whether or not incoming messages are forwarded to the CIC Server by ISAPI Listener. Implementers are
strongly encouraged to edit I3SOAPISAPIConfig.xml immediately after SOAP ISAPI Listener is installed,
and whenever new handlers implement an additional SOAPAction.

The default configuration indiscriminately forwards all SOAP requests to the Interaction Center server
identified in the ISAPI Listener install. You should modify the filter file to make the following
modifications:

1. Add <Rule> elements that identify the specific operations (SOAPActions) that your CIC server
should process. Thereafter, SOAP ISAPI Listener will forward only those particular SOAPActions
to the CIC server.

2. Set timeout thresholds for specific SOAPActions used in your environment.

These modifications are particularly important if your SOAP Listener is exposed to the Internet. If you
leave the default filter unchanged, your CIC server is more venerable to DoS attacks. Before we discuss
the modification procedure steps in detail, it is necessary to introduce the format of the configuration
file.

I3SOAPISAPIConfig.xml Filter File Format

The ISAPI filter is just an XML file whose structure can be described as follows. Its root element,
<FilterConfig> has three child elements, <ICServers>, <Defaults> and <Rules>.

<ICServers>

The <ICServers> element contains a list of Interaction Center Servers to which to route the messages.
<ICServers> can have <ICServer> and <ICServer2> child elements.

<ICServer2> Uses a remote subsystem connection. GenSSLCerts must be run prior to attempting to
connect to a notifier with this type of connection. In a switchover situation, use <ICServer>. <ICServer2>
will not work correctly in switchover environments.

The attributes of the <ICServer> child element are:

name

The name of the CIC server, used to identify the server in filter rules.

host

Hostname or IP address of the Notifier (CIC) server.

username

Login name for the Notifier connection.

password

Password for the Notifier session.

The attributes of the <ICServer2> child element are:

name

Name of the server (used to identify it in rule action).

host

Hostname or IP address of the Notifier server.

<Defaults>

The <Defaults> element stipulates default rule actions. It has two child elements. <ForwardRequest>
identifies requests that will be forwarded. <HTTPResponse> identifies requests to be rejected.

The attributes of the <ForwardRequest> child element are:

server

Name of the Interaction Center Server configured through the corresponding <ICServer> tag.
This attribute is (case-sensitively) matched against the name attributes of the <ICServer> tags.

initiatorEvent

Name of the InitiatorEvent (notification event) as which the request should be forwarded to the
Interaction Center server. If not explicitly specified or an empty string, the soapAction from the
HTTP header will be used.

soapAction

SOAPAction string to be forwarded to IP. If not defined or "*", use same action that matched the
rule.

clientName

Client name value specified in the request notification. Default = "I3SOAPISAPI". This is mainly
informational for use as a trace message.

requestTimeout

Timeout value used for the request. Default as specified by ‘DefaultRequestTimeout' registry
key. Time in milliseconds

includeTransportInfo

Specifies whether to include the TransportInfo data in the request sent to IP. Possible values:
"1", "0", "true", "false". Default = "1".

The attributes of the <HTTPResponse> child element are:

statusCode

HTTP status code. Default = "500".

statusText

HTTP status text. Default = lookup based on statusCode (for "500": "Internal Server Error").

soapFaultcode

Value of the <faultcode> element in the <Fault> element of the response sent back to the client.
Default = "Server.SOAPAction".

soapFaultstring

Value of the <faultstring> element in the <Fault> element of the response sent back to the
client.. Default = "The SOAPAction is not recognized by the server!"

<Rules>

The <Rules> element contain <Rule> child elements which define the action to be performed when the
rule fires. That happens when the request's SOAPAction matches the rule's soapAction attribute. The
<Rule>child element has only one attribute:

soapAction

SOAPAction that triggers this rule. SOAPAction matching is case-sensitive.

Sample I3SOAPISAPIConfig File

This sample filter listed below shows how the elements fit together. The numbers are for illustration
purposes and do not appear in an actual configuration file. See SOAP ISAPI Filter Schema for the schema
used by I3SOAPISAPIConfig.xml.

 1 <FilterConfig xmlns="urn:schemas-inin-com:soapisapi-filter-config">

 2 <ICServers>

 3 <ICServer name="localhost"

 4 host="localhost"

 5 userName=""

 6 password=""/>

 7 <ICServer name="mars"

 8 host="mars"

 9 userName="eic_admin"

 10 password="i3"/>

 11 </ICServers>

 12 <Defaults>

 13 <ForwardRequest server="localhost"

 14 clientName="I3SOAPISAPI"

 15 requestTimeout="20000"

 16 includeTransportInfo="1"/>

 17 <HTTPResponse statusCode="500"

 18 statusText="Internal Server Error"

 19 soapFaultcode="Client.SOAPAction"

 20 soapFaultstring="The specified method is not supported!"/>

 21 </Defaults>

 22 <Rules>

 23 <Rule soapAction="uri:my-calculator#Add">

 24 <ForwardRequest initatorEvent="uri:my-calculator"/>

 25 </Rule>

 26 <Rule soapAction="uri:my-calculator#Subtract">

 27 <ForwardRequest initatorEvent="uri:my-calculator"/>

 28 </Rule>

 29 <Rule soapAction="uri:my-calculator#Multiply">

 30 <ForwardRequest initatorEvent="uri:my-calculator"/>

 31 </Rule>

 32 <Rule soapAction="uri:my-calculator#Divide">

 33 <ForwardRequest initatorEvent="uri:my-calculator"/>

 34 </Rule>

 35 <Rule soapAction="uri:test#foo">

 36 <ForwardRequest server="mars"

 37 soapAction="uri:test#bar"

 38 requestTimeout="120000"/>

 39 </Rule>

 40 <Rule>

 41 <HTTPResponse/>

 42 </Rule>

 43 </Rules>

 44 </FilterConfig>

This sample specifies several SOAPActions that refer to a calculator service. On line 23, the SOAPActions
of the calculator are forwarded with the "uri:my-calculator" InitiatorEvent, so all requests trigger the
same initiator. All other attributes of that rule are inherited from the default <ForwardRequest>
element (line 13). Accordingly, requests for my-calculator are sent to the "localhost" server, even

though that was not explicitly defined in the rule. It is easy to specify attributes in a Rule element that
override default elements. In line 35, the SOAPAction "uri:test#foo" is forwarded as "uri:test#bar" (both
the SOAPAction and InitiatorEvent) to the server "mars". The request timeout for this particular request
is set to 2 minutes (120,000 milliseconds).

The last rule simply rejects all other SOAPActions with the default <HTTPResponse> rule action. To
forward all SOAPActions indiscriminately, the following rule could be used:

<Rule>

 <ForwardRequest/>

</Rule>

Wildcard Pattern Matching
Currently, we do not support regular expression patterns as the soapAction attribute of a
rule, although that may be added in a future release. However, to simplify filters for
objects with many methods, a simple wildcard pattern is supported: The soapAction value
may end with an asterisk (*), which means that the SOAPAction many be followed by one
or more characters, that are ignored in the match. The * wildcard is supported only if it is
the last character in a soapAction attribute. For example, this technique could be used to
replace all rules for the calculator with a single one, where soapAction attribute has a
value of " uri:my-calculator#*". Implement wildcards with care, or not at all, since this
opens the possibility for DoS attacks on the Notifier event-ID caches. We thus strongly
suggest explicitly adding rules for each SOAPAction that is to be forwarded to the server.

Forward only supported SOAPActions to CIC

1. Customize the ISAPI filter file to prevent the SOAP Listener task from indiscriminately forwarding
all SOAP requests to the Interaction Center Server. Filtering ensures that the CIC Server receives
only those requests that match supported SOAPActions.

2. Set SOAPAction Timeout Values. You can optionally modify this file to assign SOAPAction-
specific timeout values, by adding requestTimeout attributes to ForwardRequest elements. The
example below shows how to set the timeout value for a SOAPAction named "bar" to 120
seconds.

<ForwardRequest server="mars" …identifies the CIC server

soapAction="uri:test#bar" …identifies which SOAPAction

requestTimeout="120000"/> …action-specific timeout value in milliseconds

3. Unload the SOAP ISAPI DLL. To put a modified filter configuration into effect, you must unload
the ISAPI DLL. The DLL will reload automatically the next time that a SOAP request is received.

1. From the desktop of your IIS server, press the Start button. Select Settings, then Control
Panel.

2. Double-click the Administrative Tools folder to open it.
3. Double-click the icon titled Internet Services Manager.

4. Right-click the name of your virtual directory. Then select Properties.
5. Select the Virtual Directory tab. Then press the Unload button.
6. Press OK to close the active dialog.
7. Close the Internet Services Manager window. Changes made to the SOAP filter

configuration will take effect the next time that a request is received.

Configuring IC SOAP Listener to work with IC 4.0 and 2015 or later

The IC SOAP Listener install does not properly handle certificate mappings necessary for connecting to
the IC 4.0 and 2015+ Notifier. This article describes the steps required to enable IC SOAP Listener to
function in an CIC 4.0 or COC 2015+ environment when installed on a separate web server.

Perform these steps after the CIC SOAP Listener component is installed on the web server
and patched to the latest SU level.

Update the IC User Configuration

1. Navigate to C:\Program Files (x86)\Interactive
Intelligence\SOAPListener\Filter directory.

2. Edit the I3SOAPISAPIConfig.xml file.
3. Update tag values, where:

o ICSERVER is the name of the CIC server to which a connection should be made
o ICUSERNAME is the name of a valid user account on the CIC server
o ICPASSWORD is the password for CC user

4. Save the file.

Update the Registry

1. Open the registry by navigating to Start | Run | regedit.
2. Select the HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Interactive

Intelligence\Certificates registry key. If this key does not exist create it.
3. Under this key there should be an entry named Path with type REG_SZ and a data value of

C:\Program Files (x86)\Interactive Intelligence\Certificates. If this key
does not exist create it.

4. Right-click the HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Interactive
Intelligence\Certificates key. Then select Permissions….

5. Grant the NETWORK user Full Control access over this key.

Use the NETWORK user not the NETWORK SERVICE user.

Update Environment Variables

1. Right-click My Computer* and select *Properties.
2. Select Advanced System Settings.

o Click the Environment Variables button.

3. Add a new System variable with a Variable name of ININ_Certificates. Set a Variable
value of C:\Program Files (x86)\Interactive

Intelligence\Certificates\<WEB SERVER NAME>_ININ_Certificates.xml where
<WEB SERVER NAME> is the name of the web server the IC SOAP Listener component was
installed on.Updating the Certificates Directory:

4. Navigate to C:\Program Files (x86)\Interactive Intelligence.
5. Right-click the Certificates folder and select Properties. If this folder does not exist

create it.
6. Select the Security tab
7. Grant the NETWORK user Full Control over this directory

Use the NETWORK user not the NETWORK SERVICE user.

8. Restart the server.
9. After the restart, use the command gensslcertsu -c <notifier> -f to generate

certificates against each IC server the SOAP Listener will connect to.

Update IIS Settings

1. Under ISAPI and CGI Restrictions, add a new entry, specifying the I3SOAPISAPIU.dll, and select
"Allow extension path to execute".

2. Under SoapListener web site, select Handler Mappings.
3. Add a Module Mapping.

o Request path: *.dll
o Module: IsapiModule
o Executable: browse to I3SOAPISAPIU.dll
o Enable Execute under the Access tab in Request Restrictions

4. Select the Application Pools tab, then select the app pool that the default website is
configured under, then "Advanced Settings".

5. For SoapListener, set 32-Bit Applications to True.
6. Set Managed Pipeline Mode to Classic.
7. Reboot the server.

Additional steps for switchover pairs

On each CIC server:

1. Open regedit and navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Interactive
Intelligence\Certificates. Right click on this registry key, and select Permissions.
Click on the Add button, and enter NETWORK SERVICE for the user. Give this user Full
Control to allow the user permissions to access the registry key.

2. Open Windows Explorer.
3. Navigate to the \I3\IC\Certificates directory.
4. Select the <Machine Name>_ININ_Certificates.xml, <Machine

Name>_PrivateKey.bin and <Machine Name>_PublicKey.bin files. Right click and then
select Properties.

5. Click on the Security tab. Then click Add. Enter NETWORK SERVICE for the user, and give
Full Control to this user to allow proper file access to these files.

6. Do the same for the \I3\IC\Certificates\Client\Remote_Client\<Notifier
Name>\<Notifier Name>_TrustedCertificate.cer file.

Additional configuration steps required for SOAP Listener when using IIS7

Several settings need to be configured in IIS7 for SOAP functionality in a CIC 4.0 (or later) environment.
As a supplement to the installation document, the following article covers the extra steps that need to
be made in IIS7 before SOAP Listener is fully operational.

When utilizing SOAP functionality in CIC 4.0 with IIS7, it is important to note that SOAP Listener is an
ISAPI extension. To enable an ISAPI extension, make the following changes in IIS7:

1. Add an exception to "ISAPI and CGI Restrictions" so that the "I3SOAPISAPIU.dll" is allowed to
execute. This can be found at the server level in IIS Manager.

2. After selecting restrictions, choose "Add..." from the right-hand side of IIS Manager and input
the filepath and description for SOAP Listener.

3. Next, enable "ISAPI-dll" handler mapping. Genesys recommends doing this at the "SoapListener"
application level, but it can be accomplished at a site or server level as well depending on the
desired inheritance model. After selecting SOAP Listener from the "Default Web Site" hierarchy,

highlight the "ISAPI-dll" handler mapping. Then select "Edit Feature Permissions..." from the
right-hand side of the screen.

4. Check "Execute" in the popup window. Then click OK.

At this point, SOAP Listener is configured to work with IIS7 in a CIC 4.0 or later environment.

SOAP ISAPI Filter Schema

The ISAPI Filter Configuration file conforms to the following schema:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="urn:schemas-inin-com:soapisapi-filter-config"

 targetNamespace="urn:schemas-inin-com:soapisapi-filter-config"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:element name="FilterConfig" type="tns:FilterConfig"/>

 <xsd:complexType name="FilterConfig">

 <xsd:sequence>

 <xsd:element name="ICServers" type="tns:ICServers" minOccurs="0"/>

 <xsd:element name="Defaults" type="tns:Defaults" minOccurs="0"/>

 <xsd:element name="Rules" type="tns:Rules" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ICServers">

 <xsd:element name="ICServer" type="tns:ICServer" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="ICServer">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="host" type="xsd:string" use="required"/>

 <xsd:attribute name="userName" type="xsd:int" use="optional"/>

 <xsd:attribute name="password" type="xsd:boolean" use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="Defaults">

 <xsd:sequence>

 <xsd:element name="ForwardRequest" type="tns:ForwardRequest"
minOccurs="0"/>

 <xsd:element name="HTTPResponse" type="tns:HTTPResponse"
minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Rules">

 <xsd:element name="Rule" type="tns:Rule" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="Rule">

 <xsd:choice minOccurs="0">

 <xsd:element name="ForwardRequest" type="tns:ForwardRequest"/>

 <xsd:element name="HTTPResponse" type="tns:HTTPResponse"/>

 </xsd:choice>

 <xsd:attribute name="soapAction" type="xsd:string" use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="ForwardRequest">

 <xsd:attribute name="server" type="xsd:string" use="optional"/>

 <xsd:attribute name="initatorEvent" type="xsd:string" use="optional"/>

 <xsd:attribute name="soapAction" type="xsd:string" use="optional"/>

 <xsd:attribute name="clientName" type="xsd:string" use="optional"/>

 <xsd:attribute name="requestTimeout" type="xsd:int" use="optional"/>

 <xsd:attribute name="includeTransportInfo" type="xsd:boolean"
use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="HTTPResponse">

 <xsd:attribute name="statusCode" type="xsd:positiveInteger"
use="optional"/>

 <xsd:attribute name="statusText" type="xsd:string" use="optional"/>

 <xsd:attribute name="soapFaultcode" type="xsd:QName" use="optional"/>

 <xsd:attribute name="soapFaultstring" type="xsd:string" use="optional"/>

 </xsd:complexType></xsd:schema>

Reinstall/Uninstall SOAP Listener

If you run the SOAP Listener Install a second time, it provides the opportunity to change the way
features are installed, repair installation errors, or remove SOAP Listener from your computer.

1. Insert your CIC installation DVD (or mount an ISO image). In many cases, the user interface
application will start automatically. If it does not appear, run autorun.exe from the root
directory.

2. Click the Optional Installs (2) button.
3. Click CIC SOAP Listener.
4. Click Next to dismiss the Welcome screen.
5. Click Change, Repair, or Remove.

Install SOAP Notifier COM

Install SOAP Notifier COM

SOAP Notifier COM objects issue SOAP notifications from automation compatible applications. SOAP
Notifier COM components provide a high-performance method of initiating handlers without incurring
the performance penalty of HTTP-based Listener operations.

Third-party applications created using the SOAP Notifier COM API directly create and forward packets to
Interaction Processor, bypassing the need to create packets received using HTTP and the Soap Listener
task.

What: Run CC SOAP Notifier COM Components Setup to install and register components needed to run
or develop third-party SOAPNotifierCOM applications on a desktop PC. Components are installed to the
destination folder specified by the user. The default folder is c:\Program Files\Interactive Intelligence.
Setup registers two dynamic link libraries: SOAPNotifierCOMU.DLL and MSSOAPNotifierConnectorU.DLL.
Setup optionally installs a help system that describes interfaces, methods, and properties in the Notifier
COM API. When this option is selected, setup adds a shortcut named SOAP Notifier COM Help to the
start menu, inside the Interactive Intelligence folder.

Where: Install these components on any PC used to develop or run SOAP Notifier applications.

Prerequisite: The desktop PC must be running a version of Windows that supports the Component
Object Model. SOAP Notifier COM API is not compatible with operating systems that do not support
COM (Linux, for example).

Steps to Complete

1. Download the CIC 2018 R1 or later .iso file from the Genesys Product Information site at
https://my.inin.com/products/Pages/Downloads.aspx.

2. Copy the .iso file to a file server (non-CIC server) with a high bandwidth connection to the
server(s) on which you will be running the CIC 2018 R1 or later installs.

3. Mount the .iso file and share the contents to make them accessible to the server(s) on which
you will be running the CIC 2018 R1 or later installs.

4. Navigate to the \Installs\Off-ServerComponents directory on the file server.
5. Copy the SOAP Notifier COM .msi file, for example, SOAPCOM_2018_R1.msi, to the server on

which you plan to run this install and double-click to launch it.
6. If prompted whether to run the install program, respond Run.
7. Press Next to dismiss the welcome screen.
8. Press Next to accept all default features.
9. Press Install to begin installation.
10. Wait while files are copied.
11. Press Finish to exit Setup.

Reinstall/Uninstall SOAP Notifier COM Components

If you run SOAP Notifier COM Components Setup a second time, it provides the opportunity to modify
the way features in installed, to repair installation errors, or to remove SOAP Notifier COM components
from your computer.

1. Click Next to proceed past the startup screen.
2. Then select Change, Repair, or Remove.

Appendix A: SOAP Transport Information and Control

Appendix A: SOAP Transport Information and Control

The transport info structure must have a TransportInfo root element that is in no namespace. It must
have a name attribute that contains the name of the transport. The transport name is useful for

https://my.inin.com/products/Pages/Downloads.aspx

debugging, tracing, or to perform transport specific operations. However, this Transport Information is
not defined by the SOAP specification. The TransportInfo element may have any number of child
elements. The following is the schema for the Transport Info structure. For efficiency, a client may
chose not to include transport information, but still send the transport name. In this case, the
TransportInfo element will be empty.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="TransportInfo" type="TransportInfoType"/>

 <xsd:complexType name="TransportInfoType">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <any minOccurs="0" maxOccurs="unbounded"/>

 <anyAttribute/>

 </xsd:complexType>

</xsd:schema>The Transport Control structure must have a TransportCtrl root
element that is in no namespace. It may contain any number of attributes or
child elements:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="TransportCtrl" type="TransportCtrl"/>

 <xsd:complexType name="TransportCtrl">

 <any minOccurs="0" maxOccurs="unbounded"/>

 <anyAttribute/>

 </xsd:complexType>

HTTP Transport

HTTP Transport

Request (Transport Info)

The following schema describes the transport information for the HTTP transport. The HTTP element is
the child element of the TransportInfo element generated by the ISAPI Listener.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="HTTP" type="HTTP"/>

 <xsd:complexType name="HTTP">

 <xsd:sequence>

 <xsd:element name="Headers" type="Headers" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="method" type="xsd:string" use="required"/>

 <xsd:attribute name="url" type="xsd:string" use="required"/>

 <xsd:attribute name="pathInfo" type="xsd:string" use="required"/>

 <xsd:attribute name="queryString" type="xsd:string" use="required"/>

 <xsd:attribute name="remoteAddr" type="xsd:string" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="Headers">

 <xsd:element name="Header" type="Header" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="Header">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

Request (Transport Info)

HTTP Element Attributes

The attributes of the HTTP entry have the following meaning:

method

The HTTP method with which the request was made. In our case usually POST. This is equivalent
to the value of the CGI variable REQUEST_METHOD.

url

Designates the base portion of the URL. Parameter values are not included (see pathInfo and
queryString).

pathInfo

Contains the additional path information given by the client. This consists of the trailing part of
the URL after the ISAPI DLL name, but before the query string, if any. Corresponds to the CGI
variable PATH_INFO.

queryString

Contains the information that follows the first question mark in the URL Corresponds to the CGI
variable QUERY_STRING.

remoteAddr

Contains the IP address of the client or agent of the client (for example gateway, proxy, or
firewall) that sent the request. Corresponds to the CGI variable REMOTE_ADDR.

Request Transport Example

This sample Transport Info structure adheres to schemas:

<TransportInfo name="HTTP">

 <HTTP method="POST" url="/soapendpoint/I3SOAPISAPIAD.DLL" pathInfo=""

 queryString="" remoteAddr="127.0.0.1">

 <Headers>

 <Header name="Host">localhost</Header>

 <Header name="Content-Type">text/xml</Header>

 <Header name="Content-Length">1234</Header>

 <Header name="SOAPAction">"uri:my-soap-request#MyMethod"</Header>

 </Headers>

 </HTTP>

</TransportInfo>

Response (Transport Control)

Response (Transport Control)

The following schema describes the transport control data for the HTTP transport. The HTTP element is
the child element of the TransportCtrl element.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="HTTP" type="HTTP"/>

 <xsd:complexType name="HTTP">

 <xsd:sequence>

 <xsd:element name="Headers" type="Headers" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="statusCode" type="xsd:positiveInteger"
use="optional"/>

 <xsd:attribute name="statusText" type="xsd:string" use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="Headers">

 <xsd:element name="Header" type="Header" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="Header">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

Response Transport Example

The following is an example of a transport control response structure that "asks" the ISAPI listener to
send a 501 error (Not Implemented) back to the client. The default status codes are 200 (OK) for
successfully processed requests, and 500 (Internal Server Error) for failed requests (body contains a
<Fault> element).

<TransportCtrl>

 <HTTP statusCode="501" statusText="Not Implemented"/>

</TransportCtrl>

Tip—Header fields specified in the TransportControl structure will have precedence over
the default headers generated by the ISAPI listener (such as "Content-Type:text/xml").

Appendix B: SOAP Tools

Appendix B: SOAP Tools

This appendix provides information about the tools in Interaction Designer that process SOAP requests
and responses. SOAP tools are late-bound, meaning that the structure of data processed by a SOAP
handler does not have to be specified at compile time when the handler is published. SOAP tool steps

can be added to any handler, to create and send SOAP requests to any server that understands SOAP.
SOAP Tools do not support calls to an SSL server. In CIC 2.3 and later, the assumed namespace prefix is
SOAP, rather than SOAP-ENV, for compatibility with Microsoft .NET. These tools are also documented in
the Interaction Designer help.

There are 5 categories of SOAP tools:

• Initiator Tools
• Request Tools
• Payload Processing Tools
• Invocation Tools
• Helper Tools

Initiator Tools

Initiator Tools

SOAP Initiator

This initiator triggers if the ‘Notification Event' of the request matches a specified string. The Notification
Event on which the Initiator triggers is specified in the property dialog.

Parameter Dir Type Remarks
SOAP
Request OUT Handle Handle representing the SOAP request. It can subsequently be

used to query additional information from the (HTTP) header.
Initiator
Event OUT String String of the notification event that triggered the initiator.

SOAP
Action OUT String SOAP Action of the request that triggered the handler.

Request Tools

Request Tools

SOAP Get Request Info

Queries some information from the request handle. Exit Paths: Success, Failure.

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request.
Initiator Event OUT String Notification event that caused the initiator to trigger.
SOAP Action OUT String SOAP action code of that request.
Client ID OUT Integer Client ID (Notifier object id).
Client Name OUT String Name of the client.
Request ID OUT Integer Request ID (for debugging/tracing purposes).

Payload Size OUT Integer Size of the request payload in bytes.
Transport Info Size OUT Integer Size of the transport information in bytes.

SOAP Abort Request

Aborts the request. If ‘Send Unhandled Response' is False, it does not send a response notification, not
even an "Unhandled" response when the Request handle goes out of scope. Aborting a request is useful
if a SOAP request handler is registered as Monitor handler, for example for wildcard SOAPAction.
Multiple handlers may fire at the same time, but only one must send a response notification to the
client.

Exit Paths: Success, Failure

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request
Send Unhandled Response IN Boolean Checkbox (default = False)

SOAP Get Transport Info

Returns an XML document containing transport specific (header) data. It allows the client to include any
kind of out-of-band data in the request. For example, for HTTP requests, this document contains the
HTTP method and a list of the header elements.

Tip—The data may be parsed every time the tool is invoked or cached. This may depend
on the specified selection namespaces. The returned document is read-only.

See SOAP ISAPI Filter Schema for schema details. If there is no transport information data, an empty
document is returned and the tool takes the ‘No Info' exit. If there is an error (Failure), an empty
document is returned which can be queried with ‘XML Get Error Info'.

Exit Paths: Success, No Info, and Failure

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request
Selection
Namespaces IN String Optional. Space delimited list of namespace declarations to

be set as selection namespaces for the XPath queries.

Preserve
Whitespace IN Boolean

Checkbox:

False Default. Nonessential white space is ignored when
parsing the payload.

True Preserve nonessential white space.

Validate On
Parse IN Boolean

Checkbox:

False Default. Only verifies for well-formedness.

True Validates against the schema during parse.

Resolve
Externals IN Boolean

Checkbox:

False Default. Do not resolve resolvable namespaces.

True Resolve resolvable externals (namespaces, DTDs, entity
references etc.) at parse time.

Transport Info OUT Node

Read-only. XML document containing transport-specific out-
of-band information. Empty document if no transport
information. See Appendix A: SOAP Transport Information
and Control.

SOAP Expects Response

Takes a different exit path depending on whether the SOAP request requires a response (YES) or not
(NO). If the request expects a response and the handler exits (the SOAP Request handle goes out of
scope) without having invoked ‘SOAP Send Response', a Response Notification is sent back with the
‘Unhandled' flag set to true.

Exit Paths: YES, NO

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request

SOAP Parse Request Payload

Parses the payload of the request into an XML document. If the ‘Validate SOAPAction' parameter is
True, the tool checks the SOAPAction field of the request against the payload. The payload data is
parsed every time this tool is invoked (i.e. it is not cached). The document is furthermore not read-only
and thus may be modified as needed, for example to create the response. The payload envelope node
will still be returned, even if the SOAP Action does not match.

Heuristic

This tool uses a heuristic to match the action code (legend: <NS> = namespace of the first body element;
<MethodName> = Name of the element [method name]):

<NS>

<NS> [<AnyCharacter>] <MethodName>

<MethodName>

[<AnyCharacter>] <MethodName>

This will catch actions such as "uri:my-uri#MyMethod", "http://soap.inin.com/e-faq", "MyMethod" etc.
An empty SOAPAction matches all methods.

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request

Validate
SOAPAction IN Boolean

Checkbox:

False Don't verify SOAPAction header field against payload.

True Default. Check SOAPAction header field against method
namespace and name.

Action
Validation
Mask

IN String Optional. Mask for validation of SOAP Action.
Note: this is a future extension that has not been defined.

Selection
Namespaces IN String

Optional. Space delimited list of namespace declarations to
be set as selection namespaces the XPath queries. If this
argument not specified, just "SOAP-ENV" is mapped to the
envelope namespace.
NOTE:

The "SOAP-ENV" prefix will be used irrespective of the actual
prefix in the payload.

A declaration mapping "SOAP-ENV" to the envelope
namespace will always be added to the declarations, unless
SOAP-ENV is already declared in the argument.

Preserve
Whitespace IN Boolean

Checkbox:

False Default. Nonessential whitespace is ignored when
parsing the payload.

True Preserve nonessential white space

Validate On
Parse IN Boolean

Checkbox:

False Default. Only verifies for well-formedness.

True Validates against the schema during parse.
Resolve
Externals IN Boolean

Checkbox:

False Default. Do not resolve resolvable namespaces.

True Resolve resolvable externals (namespaces, DTDs, entity
references etc.) at parse time.

Payload OUT Node

XML document with Envelope as document element. If there
is an error, the document may be empty (but not NULL), and
the ‘XML Get Error Info' tool can be used to retrieve
information about what failed).

Exit Paths

Success

Payload successfully parsed. SOAP Action matches.

Empty Payload

SOAP Payload is empty (XML document has no document element).

Wrong Action

SOAP Action validation enabled and action doesn't match.

Parse Error

A parse error occurred parsing the payload. Use ‘XML Get Error Info'.

Failure

Some other failure. Use ‘XML Get Error Info'.

SOAP Send Response

Sends the specified payload as response to the sender of the request. To support transport specific
features, the ‘Transport Control Data' argument takes an XML node whose content will be sent back to
the client. It can be used to send transport specific out-of-band data to the client. For example, for the
HTTP transport it allows to set additional header fields or specify a special status code. See SOAP ISAPI
Filter Schema for schema details. The schema itself is not part of SOAP specification.

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request

Payload IN Node Node of the payload envelope to send back to the client. Must
be document node or <Envelope> document element.

Transport
Control Data IN Node

Optional. Node of an XML structure with additional transport
specific control data. See Appendix A: SOAP Transport
Information and Control.

Exit Paths

Success

Response was sent successfully.

No Response

This request does not expect a response.

Duplicate

Response for this request has already been sent.

Failure

Some other error. Check Payload node with XML Get Error Info.

Payload Processing Tools

Payload Processing Tools

SOAP Create Envelope

Creates a new SOAP envelope. To simplify composing RPC requests, where the first child element of the
<Body> element is the method to invoke, the ‘RPC Method Name' and ‘RPC Method Namespace'
argument can be used as shortcut. The same can be achieved by invoking ‘SOAP Add Body Element'
after creating the envelope. Therefore, this tool creates the following XML document:

<?xml version="1.0" encoding="{XML Encoding}" ?></{RPC Method Name}>]

 </{Envelope Prefix}:Body>

</{Envelope Prefix}:Envelope>

The ‘Declare Namespaces' argument is used to declare namespaces in the envelope that will be used in
other elements, such as the xsd or xsi prefixes for typed arguments. It keeps the size of the envelope
low, as otherwise each element that uses a prefix will contain xmlns attributes. If the ‘RPC Method
Name' argument has no namespace prefix and an ‘RPC Method Namespace' different than "" (default
namespace) is specified, a prefix will be synthesized, unless the local name starts with a ‘:' (which is
illegal in XML, but signals to this tool not to add a synthesized namespace prefix). Adding a prefix can
greatly reduce the size of the message if child elements are in no namespace (usually parameters are in
the default namespace), as otherwise each child element would get a xmlns="" attribute.

Exit Paths: Success, Failure

Parameter Dir. Type Remarks
XML
Encoding IN String Optional. Character encoding to be used for the XML document.

If omitted, "UTF-8" is used. See remarks.
Envelope IN String Optional. Namespace prefix for the envelope namespace. If not

Prefix specified the default "SOAP-ENV" is used.

Encoding
Style IN String

Optional. Space separated list of namespaces specifying the
encoding style (value of the ‘encodingStyle' attribute). If not
specified or "STANDARD" is passed as string,
"http://schemas.xmlsoap.org/soap/encoding/" is used.

The encodingStyle attribute is omitted if "NONE" is specified.

RPC Method
Name IN String

Optional. Fully qualified name of the method element (first child
element of the body element).

If not specified, no method element will be added.

Please consult Remarks for additional details!
RPC Method
Namespace IN String Optional. Namespace of the method element.

Declare
Namespaces IN String

Space delimited list of namespace declarations of the form
xmlns:{prefix}=‘{URI}' to be declared in the envelope. See
remarks.

Selection
Namespaces IN String

Optional. Space delimited list of namespace declarations to be
set as selection namespaces for the XPath queries. If argument
not specified, the envelope prefix and the ‘Declare Namespace'
namespaces will be set as selection namespaces.

NOTE: mapping for envelope prefix will always be added.
Envelope OUT Node XML document with Envelope as document element.

SOAP Get Body

Retrieves the Body element from the SOAP envelope. A body must exist and if it can't be found, the tool
exits through ‘Failure' and attaches error information to the envelope.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node whose
document element is <SOAP-ENV:Envelope> or the node is the
element itself.

Body OUT Node Node of the <SOAP-ENV:Body> element.

SOAP Get Body Element

Retrieves the first body element that matches the given base name and namespace. If no namespace is
specified, the first element matching ‘Base Name' is returned. Returns the first element in the body if
neither a name nor namespace is given.

Exit Paths: Success, Not Found, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Base Name IN String

Optional. Base name of the element to return. If no name
given, the first entry in the body in ‘Namespace' is returned.
This corresponds to the element of the method for RPC
requests.

Namespace IN String Optional. Namespace of the element to return

Retrieve
Value IN Boolean

Checkbox:

False Default. Do not retrieve value

True Return node value

Body Element OUT Node
Child element of the <SOAP-ENV:Body> element that has the
given base name and namespace. NULL node if the element is
not in the body.

Element Base
Name OUT String Base name of the returned element

Element
Namespace OUT String Namespace URI of the returned element

Value OUT String Value of the body element (if ‘Retrieve Value' = True)

SOAP Add Body Element

Adds an entry to the body of the SOAP envelope. Use the XML tools on the returned ‘Element' node to
add rich contents to the element (not just a string).

Tip—If the ‘Name' argument has no namespace prefix and a ‘Namespace' different than ""
(default namespace) is specified, a prefix will be synthesized, unless the local name starts
with a ‘:' (which is illegal in XML, and thus signals to this tool not to add a synthesized
namespace prefix). Adding a prefix can greatly reduce the size of the message if child
elements are in no namespace, as otherwise each child element would get an xmlns=""
attribute.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the node
is the element itself.

Name IN String Fully qualified name of the element to create and add to the
body.

Namespace IN String

Optional. Namespace URI of the element. If the parameter is
omitted and the name has a namespace prefix, the tool will
search in the parent elements for the namespace with the same
prefix and make the element a member of this namespace.

Encoding
Style IN String

Optional. Value of the ‘encodingStyle' attribute. Attribute is
omitted if not specified or "NONE". Specify "STANDARD" for
standard namespace
("http://schemas.xmlsoap.org/soap/encoding/").

Value IN String Optional. String value to set as content of the element.

Replace
Existing Body
Element

IN Boolean

Checkbox:

False Default. Add the element as last child of the body.

True Replace first element in the body that has the same (local)
name and namespace. If body contains multiple elements with
the same name and namespace, the remaining ones are not
modified.

Delete All
Existing Body
Elements

IN Boolean

Checkbox:

False Default. Append to the child list of the body.

True Remove all existing elements from the body prior to
adding the new element.

Body
Element OUT Node Node of the element that has just been added.

SOAP Query Encoding Style

Matches a space separated list of URIs against the ‘encodingStyle' attribute of the element. If the
element doesn't have an ‘encodingStyle' attribute, the parent of the element is checked until an
element with an ‘encodingStyle' attribute is found. If that attribute contains any of the specified
encoding style URIs, the tool returns through ‘Found' and returns the style that was found.

Tip: If the first ‘encodingStyle' attribute found along the parent chain does not contain any
of the specified styles, the search does not continue and the tool exits ‘Not Found'.

Exit Paths: Found, Not Found, Failure

Parameter Dir Type Remarks

Element IN Node (child) Element of the SOAP envelope to query. If document
node, the document element is queried.

Encoding
Styles IN String Space separated list of URIs to match against the ‘encodingStyle'

attributes.
First Style
Found OUT String Encoding style namespace that was found

Element Of
Style OUT Node XML node of the element in which the encoding style attribute

was found.

SOAP Get Header

Retrieves the header element from the SOAP envelope if it has one.

Exit Paths: Success, No Header, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node whose
document element is <SOAP-ENV:Envelope> or the node is the
element itself.

Header OUT Node Node of the <SOAP-ENV:Header> element. NULL node if the
envelope contains no header.

SOAP Get Header Element

Retrieves the first header element that matches the given base name and namespace. Returns the first
element in the header if neither a name nor namespace is given. Takes ‘Not Found' exit if the envelope
doesn't have a header or the element can't be found.

Exit Paths: Success, Not Found, No Header, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Base Name IN String Optional. Base Name of the element to return
Namespace IN String Optional. Namespace of the entry to return

Retrieve
Value IN Boolean

Checkbox:

False Do not retrieve value

True Default. Return node value

Header
Element OUT Node

Child element of the <SOAP-ENV:Header> element that has
the given base name and namespace. NULL node if the
envelope contains no header or the element is not in the
header.

Element Base
Name OUT String Base name of the returned element

Element
Namespace OUT String Namespace URI of the returned element

Value OUT String Value of the element (if ‘Retrieve Value' = True)

SOAP Get Header Elements

Returns iterator to a list of header elements filtered by the given arguments. Takes the ‘None' exit if
envelope has no header or none of the header elements matched the filter criteria.

Exit Paths: Success, None, No Header, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Base Name IN String Optional. Only include elements with this base name.
Namespace IN String Optional. Only include elements in this namespace.

Must
Understand IN Boolean

Optional:

False Return header entries whose ‘mustUnderstand' attribute
is "0" (or no attribute is specified)

True Return header entries whose ‘mustUnderstand' attribute
is "1".

Default: Don't filter on ‘mustUnderstand'

Actor URIs IN String
Optional. Space separated list of actor URIs. Only elements
whose actor attribute has one of these namespaces is
returned. If not specified, don't filter on actor namespace.

Header
Elements OUT NodeIter Iterator to collection of header entries. Use the ‘XML Get Next

Node' tool to iterate over collection.
Count OUT Integer Number of items in the Header Entries collection

SOAP Add Header Element

Creates a header element and adds it to the given envelope. If the envelope doesn't yet have a header,
one will be inserted before the Body element.

If the ‘Name' argument has no namespace prefix and a ‘Namespace' different than "" (default
namespace) is specified, a prefix will be synthesized, unless the local name starts with a ‘:' (which is
illegal in XML, and thus signals to this tool not to add a synthesized namespace prefix). Adding a prefix
can greatly reduce the size of the message if child elements are in no namespace, as otherwise each
child element would get an xmlns="" attribute.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Name IN String Fully qualified name of the header element to create and add
to the header.

Namespace IN String

Optional. Namespace URI of the element. If the parameter is
omitted and the name has a namespace prefix, the tool will
search in the parent elements for the namespace with the
same prefix and make the element a member of this
namespace.

Must
Understand IN Boolean

Optional. Specifies the value of the ‘mustUnderstand' attribute:

False mustUnderstand="0"

True mustUnderstand="1"

Not specified: No ‘mustUnderstand' attribute is added.
Actor URI IN String Optional. Value of the ‘actor' attribute.

Encoding
Style IN String

Optional. Value of the ‘encodingStyle' attribute. Attribute is
omitted if not specified or "NONE". Specify "STANDARD" for
standard namespace
("http://schemas.xmlsoap.org/soap/encoding/").

Value IN String Optional. String value to set as content of the element.

Replace
Existing
Header
Element

IN Boolean

Checkbox:

False Default. Add the element as last child of the body.

True Replace first element in the body that has the same (local)
name and namespace. If body contains multiple elements with
the same name and namespace, the remaining ones are not
modified.

Delete All
Existing
Header
Elements

IN Boolean

Checkbox:

False Default. Append to the child list of the body.

True Remove all existing elements from the body prior to

adding the new element.
Header
Element OUT Node Node of the element that just has been inserted.

SOAP Get Fault

Retrieves fault information from the SOAP envelope. If there is no <Fault> element in the envelope, the
‘No Fault' exit is taken and NULL elements and empty strings are returned. If the envelope is read-only,
the returned elements will be read-only too.

Exit Paths: Success, No Fault, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the node is
the element itself.

Fault
Element OUT Node Node of the <Fault> element.

Fault Code OUT String Value of the <faultcode> element. It provides programmatic
information about the fault.

Fault String OUT String Value of the <fautstring> element. It provides human readable
information about the fault.

Fault Actor OUT String Value of the <faultactor> element. It provides the URI of the
source of the fault.

Detail
Element OUT Node

Node of the <detail> element. It is used to transfer application
specific fault information. NULL Node if there is no <detail>
element.

SOAP Set Fault

Adds a <Fault> element to the envelope or replaces an existing one. If one of the mandatory fields (Fault
Code, Fault Actor) is empty, the Failure path is taken and XML Get Error Info may be used on the
Envelope node to query for error reasons. If the envelope already has a <Fault> element, the tool will
remove the existing <Fault> element and replace it with the new element.

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document
node whose document element is <SOAP-ENV:Envelope> or
the node is the element itself.

Fault Code IN String String to set as value of the <faultcode> element. String must

not be empty.

Fault String IN String String to set as value of the <fautstring> element. Should be
set to provide human readable information.

Fault Actor IN String Optional. String to set as value of the <faultactor> element. If
argument is not specified, no <faultactor> element is added.

Create Detail
Element IN Boolean

Checkbox:

False Don't create a <detail> element

True Default. Create an empty <detail> element

NOTE: According to the SOAP spec, a <detail> element must
be present if the fault is because the <Body> could not be
processed successfully.

Preserve Body
Elements IN Boolean

Checkbox:

False Default. Remove all existing body elements and replace
with <Fault> element

True Leave existing body elements and append <Fault>
element as last child of <Body>

NOTE: When sending a fault response to the client, only the
<Fault> element is allowed in the body!

Detail Element OUT Node Returns the node of the newly created <detail> element. If
‘Create Detail Element' is False, a NULL node is returned.

Exit Paths: Success, Failure

SOAP Create Fault Response

Copies the request envelope and replaces all children of the <Body> element with a single <Fault>
element. It thus combines the ‘SOAP Create Envelope' and ‘SOAP Set Fault' tools. The selection
namespaces from the source envelope document are copied to the response envelope document as
well.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the request SOAP payload. Can be a
document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Fault Code IN String String to set as value of the <faultcode> element. String must
not be empty.

Fault String IN String String to set as value of the <fautstring> element. Should be

set to provide human readable information.

Fault Actor IN String Optional. String to set as value of the <faultactor> element. If
argument is not specified, no <faultactor> element is added.

Create Detail
Element IN Boolean

Checkbox:

False Don't create a <detail> element

True Default. Create an empty <detail> element

NOTE: According to the SOAP spec, a <detail> element must
be present if the fault is because the <Body> could not be
processed successfully.

Copy Header IN Boolean

Checkbox:

False Does not copy the <Header> element from the source
envelope.

True Copies the <Header> element and its content from the
source envelope.

Response
Envelope OUT Node Document node of the response envelope

Detail
Element OUT Node Node of the <detail> element of the <Fault> element. If

‘Create Detail Element' is False, a NULL node is returned.

SOAP Get RPC Parameter

This is a convenience tool for examining RPC requests. It retrieves a parameter element (child) from the
first element in the <Body> element (method in an RPC request). It returns the first element that
matches all of the specified arguments. If ‘Base Name', ‘Namespace', and ‘Index' are undefined, the first
element will be returned.

For example, to retrieve the 2nd parameter from the ‘Add' method in the calculator example presented
in Listing 4, you would specify "Parameter2" as name and "" as namespace, or ‘1' as index.

Exit Paths: Success, Not Found, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Base Name IN String Optional. Base name of the parameter
Namespace IN String Optional. Namespace of the parameter
Index IN Integer Optional. Zero based index into parameters of the method. If

this parameter is specified, ‘Name' and ‘Namespace' may be
omitted, but if present must match the name and namespace
of the parameter.

Retrieve
Value IN Boolean

Checkbox:

False Do not retrieve value

True Default. Return node value

Disable retrieval of value if parameter contains a large XML
document and the value is not used (performance option).

Parameter
Element OUT Node Parameter element

Parameter
Base Name OUT String Base name of the parameter element

Parameter
Namespace OUT String Namespace URI of the parameter element

Parameter
Index OUT Integer Zero based index of the parameter element in the child list of

the method element.
Value OUT String Value of the parameter

SOAP Add RPC Parameter

This is a convenience tool for composing RPC requests or responses. It adds a parameter element to the
first element in the body of the envelope, which represents the method in RPC requests. Use the XML
tools to add complex data (not just a string) to the parameter by manipulating the returned ‘Parameter
Element' node.

The <Body> element must have a child element (method element). Otherwise this tool fails. When using
‘SOAP Create Envelope', you must add a method element using ‘SOAP Add Body Element'. The ‘SOAP
Create RPC Response' tool already adds a method element.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the node is
the element itself.

Name IN String Qualified name of the parameter

Namespace IN String

Optional. Namespace URI of the element. If the parameter is
omitted and the name has a namespace prefix, the tool will
search in the parent elements for the namespace with the same
prefix and make the element a member of that namespace.

Value IN String Optional. Value of the parameter
Parameter OUT Node Node of the element that just has been added to the method

Element element.

SOAP Get RPC Method Info

This is a convenience tool for examining RPC requests. It retrieves the first child element of the SOAP
<Body> element (Method element in RPC requests). It also returns a collection containing the child
elements of the method, which constitute the method arguments. The tool exits through ‘No Method' if
the body does not contain an element. It returns through <Fault> if the body contains a <Fault>
element.

Exit Paths: Success, Fault, No Method, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document
node whose document element is <SOAP-ENV:Envelope> or
the node is the element itself.

Method
Element OUT Node Node of the method element (first child of the Body)

Method Base
Name OUT String Base name of the method element

Method
Namespace OUT String Namespace URI of the method element

Parameters OUT NodeIter
Iterator to collection of RPC parameter elements. Use the
‘SOAP Get Next RPC Parameter' or ‘XML Get Next Node' tool
to iterate over collection.

Parameter
Count OUT Integer Number of items in the Parameters collection

SOAP Get Next RPC Parameter

This tool returns the element node at the current iterator position and returns an iterator to the next
position. As the iterator is just a variable, you can make copies at any time to remember a certain
position, for example the start position. By using the same variable as input and output iterator, you can
easily iterate over the list by connecting the Success path back to this tool (after processing the node, of
course). The tool takes the ‘End' exit when the iterator points to an empty list or the iteration is
complete (list traversed to end).

The tool will fail (take the Failure exit) if the node to which ‘Parameter Iterator' points is not an element!
This cannot happen if the iterator was obtained through ‘SOAP Get RPC Method Info'.

Exit Paths: Success, End, Failure

Parameter Dir Type Remarks
Parameter
Iterator IN NodeIter Iterator to collection of parameter of a method.

Retrieve Value IN Boolean

Checkbox:

False Do not retrieve value

True Default. Return node value

Disable retrieval of value if value is not used and
parameter may contain a large XML document.

Next Parameter OUT NodeIter Iterator pointing to next parameter in the list
Parameter
Element OUT Node Node of the parameter element

Parameter Base
Name OUT String Base name of the parameter element

Parameter
Namespace OUT String Namespace URI of the parameter element

Value OUT String Value of the parameter

SOAP Create RPC Response

This is a convenience tool for composing the response envelope for an RPC request. It copies the source
envelope and replaces the method element in the body with an element that has the same name but
"Response" added to its name. It also adds a <Result> element as child of the method element. Usually,
the type of the return value is given by the service description and doesn't need to be included in the
<Result> element. However, the service may define the type as xsd:anyType, for example for VARIANT
types. In this case, the type must be included in the argument. The ‘Return& Value Type' argument
permits specifying the type of the result value. For example, if a type of "double" is specified, the
<Result> element will look as follows:

<Result xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:type="xsd:double">1234.567</Result>

The selection namespaces from the source envelope document are copied to the response envelope
document as well. The tool fails if the request body does not contain a method element.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the request SOAP payload. Can be a
document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Method Name
Mask IN String

Optional. Mask to create the name of the response method.

The string passed here may contain the following substitution
tags:

%1 Namespace prefix of the first child element of the <Body>
element (RPC method).

%2 Base name of the first child element of the <Body>
element (RPC method).

%{ Treat everything up to closing ‘}' as XPath query to be run
against the ‘Envelope' node and substitute the value of the
first node found into element name string.

%% ‘%' character

Default: "%1:%2Response".
Method
Namespace IN String Optional. Namespace of the method element. If not

specified, namespace of request method is used.

Result Element
Name IN String

Optional. Name of the return value element (first child of the
method element).

Default: "result"

Result Element
Namespace IN String

Optional. Namespace URI of the result element. If the
parameter is omitted and the name has a namespace prefix,
the tool will search in the parent elements for the namespace
with the same prefix and make the element a member of
that namespace.

Return Value IN String Optional. Return value of the method. It will be set as
content of the <Result> child element.

No Return
Value (void
response)

IN Boolean

Checkbox:

False Default. Add a <Result> element.

True No <Result> element is added (void method).

Copy Header IN Boolean

Checkbox:

False Default. Does not copy the <Header> element from the
source envelope.

True Copies the <Header> element and its content from the

source envelope.

Copy Method
Element
Attributes

IN Boolean

Checkbox:

False Default. Don't copy attributes from request method
element.

True Copy all attributes of the request method element into
response method element.

Response
Envelope OUT Node Document node of the response envelope

Method
Element OUT Node Node of the response method element.

Result Element OUT Node Node of the <Result> element in the method element.

SOAP Set Element Type

In SOAP, the type of an argument or the return value is specified by the service description and doesn't
need to be included in the payload. However, the service may define the type as xsd:anyType, for
example for VARIANT types. In this case, the type must be included in the argument. For example, if a
type of "double" is specified, an element will look as follows:

<Element xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:type="xsd:double">1234.567</Element>.

The type may be a user defined (complex) type. For example:

<ns1:Order xmlns:ns1="uri:my-order-type"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="ns1:Order">

<ns1:Product>Watchmacallit</ns1:Product>

<ns1:Quantity>7</ns1:Quantity>

<ns1:Price>19.99</ns1:Price>

</ns1:Order>.

Please refer to http://www.w3.org/TR/xmlschema-0 or http://www.w3.org/TR/xmlschema-2 for details
on the XML Schema Data types.

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-2

Parameter Dir Type Remarks
Element IN Node Node of an element whose Schema instance type to set

Type IN String

XSD type to declare for this element. The argument may
either be just the type name or have schema namespace
prefix, such as xsd:string. If the type argument does not
contain a prefix, xsd will be used.

Type
Namespace IN String

Optional. Namespace of the type.

Default: http://www.w3.org/2001/XMLSchema

XSI Namespace IN String

Optional. XML Schema Instance namespace.

Default:
http://www.w3.org/2001/XMLSchema-instance

XSI Namespace
Prefix IN String

Optional. Prefix of the schema instance namespace.

Default: xsi

Declare
Namespaces in
Envelope

IN Boolean

Checkbox:

False Declares the XSD and XSI namespaces in the element
itself.

True Default. Declare the XSD and XSI namespaces in the
Envelope element (actually, the document element is used, as
this tool may be for other purposes than SOAP).
If any of the parent elements already has a NS declaration for
a prefix and the namespace URI is different, the declaration
will be added to the element, and not the Envelope.

Exit Paths: Success, Failure

SOAP Create Array

Turns an element, for example an RPC parameter, into a SOAP array. The array is created for values
supplied as list of strings or just a number of empty elements that can be populated with complex data.
The following is a sample array as produced by this tool (default argument):

<Element xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

 SOAP-ENC:arrayType="xsd:string[5]"

 xsi:type="SOAP-ENC:Array">

 <xsd:string>first</xsd:string>

 <xsd:string>second</xsd:string>

 <xsd:string>third</xsd:string>

 <xsd:string>fourth</xsd:string>

 <xsd:string>fifth</xsd:string>

</Element>

If the element already has child elements, they are all removed before the array elements are added.
The array items may be user defined (complex) types. Use the ‘XML Get Next Item' tool to iterate
through the 'Item Elements' collection and populate the items. For example:

<Element xmlns:ns1="uri:my-order-type"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

 SOAP-ENC:arrayType="ns1:Order[3]"

 xsi:type="SOAP-ENC:Array">

 <ns1:Order>

 <ns1:Product>Watchmacallit</ns1:Product>

 <ns1:Quantity>3</ns1:Quantity>

 <ns1:Price>19.99</ns1:Price>

 </ns1:Order>

 <ns1:Order>

 <ns1:Product>Doodleany</ns1:Product>

 <ns1:Quantity>9</ns1:Quantity>

 <ns1:Price>12.49</ns1:Price>

 </ns1:Order>

 <ns1:Order>

 <ns1:Product>Ozadingdong</ns1:Product>

 <ns1:Quantity>1</ns1:Quantity>

 <ns1:Price>43.15</ns1:Price>

 </ns1:Order>

</Element>

For details on the XML Schema Data types, refer to http://www.w3.org/TR/xmlschema-0 or
http://www.w3.org/TR/xmlschema-2.

Exit Paths: Success, Empty, Failure

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-2

Parameter Dir Type Remarks
Element IN Node Node of the parameter to turn into an array.

Values IN StringList Optional. List of strings to set as the array items. If not
specified, empty elements will be created.

Size IN Integer

Optional. Size of the array. If not specified, the length of the
‘Values' list specifies the size. If both a ‘Values' and ‘Size'
argument are given, the ‘Size' has precedent and either not
all items of the ‘Values' list are included or the array is
padded with elements containing the ‘Default Value'.

Default Value IN String

Optional. Default array item value for padding items (if ‘Size'
is larger than size of ‘Values' or no ‘Values' defined).

Default: No value (padding elements will be empty)

Array Type IN String

Optional. Type of the array. The argument may either be just
the type name or have schema namespace prefix, such as
xsd:string. If the type argument does not have a prefix, xsd
will be used.

Default: xsd:string

Type
Namespace IN String

Optional. Namespace of the array type.

Default: http://www.w3.org/2001/XMLSchema

Encoding
Prefix IN String

Optional. Prefix of the encoding namespace
(http://schemas.xmlsoap.org/soap/encoding/).

Default: SOAP-ENC

Item Element
Name IN String

Optional. Qualified name of the array items.

Default: Qualified array type (thus, the default item element
name is xsd:string).

Item Element
Namespace IN String

Optional. Namespace of the array items.

Default: Namespace of the prefix of ‘Item Element Name'. If
no prefix, empty namespace.

XSI
Namespace IN String

Optional. XML Schema Instance namespace.

Default:
http://www.w3.org/2001/XMLSchema-instance

XSI
Namespace
Prefix

IN String
Optional. Prefix of the schema instance namespace.

Default: xsi
Include XSI
Type
Declaration

IN String
Checkbox:

False Do not add a type declaration for the array.

True Default. Add XSI type declaration for the SOAP Array. If
all parameters are default the declaration is:
xsi:type="SOAP-ENC:Array".

Declare
Namespaces
in Envelope

IN Boolean

Checkbox:

False Declares the namespaces in the element itself.

True Default. Declare the namespaces in the Envelope
element (if they aren't already). If any of the parent
elements already has a NS declaration for a prefix and the
namespace URI is different, the declaration will be added to
the element, and not the Envelope.

Return Item
Element
Collection

IN Boolean

Checkbox:

False Does not return collection of array items (‘Array Items'
is returned as NULL).

True Default. Return collection ‘Array Items' containing all
items of the array.

Item
Elements OUT NodeIter Iterator pointing to first element of a collection containing

the nodes of the array items.

Count OUT Integer

Number of items in the array.

NOTE: this value is returned, even if ‘Return Item Collection'
is False.

Invocation Tools

Invocation Tools

SOAP HTTP Request

This tool issues an HTTP request to the specified URL with the SOAP request envelope as payload. The
response body is parsed and returned as response envelope. The URL may have the following format
(also see RFC2396 at http://www.rfc.net/rfc2396.html):

['http://'] <host> [':' <port>] ['/' <path> ['?' <query>]]

The (UNICODE) string passed as URL is converted to UTF-8 and invalid characters in the resulting string
are escaped according to RFC2396 (%<hexvalue>). The structure of the request sent to the host will be
as follows:

http://www.rfc.net/rfc2396.html

'POST ' <path> ' HTTP/1.1' CRLF

'Host: ' <host> [':' <port>] CRLF

'Content-Type: text/xml; charset="' <charset> '"' CRLF

'Content-Length: ' <bodysize> CRLF

'SOAPAction: "' <SOAPAction> '"' CRLF

[<additional headers>]

CRLF

<SOAP envelope body>

The ‘Additional HTTP Headers' parameter can be used to supply additional HTTP header elements. The
headers must have the form {<name> ' :' <value> [CR] LF }* The header elements in this argument have
precedence over the default headers generated by the tool. Thus, if the ‘Additional HTTP Headers'
parameter contains a ‘Content-Length header, it will be used (with potentially unexpected results, of
course).

The response body will be parsed and returned as ‘Response Envelope' if the content type is text/xml.
Otherwise, the body is returned in ‘Raw Response Body' and an empty document node is returned as
‘Response Envelope'. This document node can be queried for information about what went wrong.

This tool maintains a global cache of the most recently resolved and successfully connected host
addresses to improve performance. Each address resolution is kept for at most 5 minutes.

Exit Paths

Success

Request was processed successfully (2xx code) and body is valid XML.

SOAP Fault

Response body contains a <Fault> element.

EmptyResponse

Response body was empty and the HTTP status code was 2xx. Some servers use this to signal
success for methods with no result (void).

Unknown Host

Invalid or unknown hostname (DNS lookup failed)

Connection Error

Unable to establish connection to server: connection failed or existing connection was lost

prematurely.

HTTP Error

HTTP error (3xx, 4xx, 5xx) and it was not a SOAP Fault.

Parse Error

Error parsing the returned XML payload (status was 200 or 500).

Timeout

The request timed out.

Size Limit

The response data exceeded the size limit.

Failure

Some other failure. Use ‘XML Get Error Info' on the ‘Response Envelope' to obtain more
information.

Parameter Dir Type Remarks
Request
Envelope IN Node XML Node of the SOAP envelope to send. Can be

document node or <Envelope> element node.
URL IN String URL of the request. See remarks for details.

SOAP Action IN String

Optional. String to be passed as SOAPAction header. The
string passed here may contain the following substitution
tags:

%1 Namespace of the first child element of the <Body>
element (RPC method).

%2 Base name of the first child element of the <Body>
element (RPC method).

%{ Treat everything up to closing ‘}' as XPath query to be
run against the ‘Request Envelope' node and substitute
the value of the first node found into the SOAPAction
string.

%% ‘%' character

If this argument is not specified, the following mask will be
used as default: "%1#%2".

The value "NONE" may be specified to suppress addition
of the SOAPAction header.

Additional HTTP
Headers IN String Optional. Additional HTTP Headers, separated by LF

characters (\n). See remarks for details.

Selection
Namespaces IN String

Optional. Selection namespaces to set in response
envelope document.

Default: Copy selection namespaces from request
envelope document.

Timeout IN Integer

Optional. Maximum time the request may take before
timing out (in milliseconds).

-1 à Never timeout.

Default: 60000 (60 seconds)

Max Response
Size IN Integer

Optional. Size limit of the response data. If the data
returned by the server exceeds this limit, the data is not
processed and the tool fails. This prevents denial of
service attacks. Default: 1MB.

Escape URL IN Boolean

Checkbox:

False URL is already escaped.

True Default. Escape invalid characters in the URL with
%<hexvalue> according to RFC2396.

Always Return
Raw Response
Body

IN Boolean

Checkbox:

False Default. Do not return raw response body.

True Returns the raw data of the response body as string
(‘Raw Response Body).

Response
Envelope OUT Node

Document node of the response envelope. If an error
occurred, an empty document is returned which can be
queried using ‘XML Get Error Info'.

Status Code OUT Integer HTTP status code of the response (e.g. 200, 500, etc).

Status Text OUT String HTTP status text of the response (e.g. "OK", "Internal
Server Error", etc.)

Response
Headers OUT String HTTP Headers returned by the server, separated by a LF

(\n).

Raw Response
Body OUT String

Raw data of the response body (data that is parsed as
response envelope). This string is only returned if the
‘Always Return Raw Response Body' parameter is True, an
error occurs, or the response content type is not XML.

Helper Tools

Helper Tools

SOAP Base64 Encode

Converts the string (which is UNICODE) into the specified character set (default = UTF-8) and encodes
the resulting data into a Base64 string. Characters that cannot be translated to the destination character
set will be represented as ‘?'. Wide character sets, such as UTF-16 are currently not supported. SOAP
does not mandate a maximum line width for base64 encoded data. Some other protocols, such as
MIME, do.

Exit Paths: Success, Failure

Parameter Dir Type Remarks
Data IN String String to encode Base64

Character Set IN String Optional. Character set to convert data into before encoding.
Default: ‘UTF-8'

Max Line
Width IN Integer

Optional. Maximum width of a line in characters.

–1 = unlimited (default).

Line Separator IN String
Optional. String inserted as line separator.

Default: "\r\n" (CR/LF)
Encoded Data OUT String String after encoding data Base64

SOAP Base64 Decode

Decodes the base64 encoded string into the binary representation and converts it to UNICODE based on
the specified character set. Thus, the character set argument specifies the character set of the base-64
encoded data.

Exit Paths: Success, Failure

Parameter Dir Type Remarks
Encoded
Data IN String Base64 encoded data

Character IN String Optional. Character set of the base64 encoded data. Default:

Set ‘UTF-8'
Decoded
Data OUT String Data after decoding from Base64 and transforming from

‘Character Set' to UNICODE.

SOAP Base64 Encode File

Reads the specified file as binary data and encodes it into a base64 string. Encoding a file prepares it for
transport inside a SOAP payload. For example, a SOAP request might encode a wave file, and send it to
CIC server. SOAP does not mandate a maximum line width for base64 encoded data. Some other
protocols, such as MIME, do. This tool can be used to send any kind of data through SOAP requests. For
example, you could encode a wave file.

Exit Paths: Success, File Not Found, Access Denied, Failure

Parameter Dir Type Remarks
Filename IN String Filename and path of the file to encode

Max Line Width IN Integer
Optional. Maximum width of a line in characters.

–1 = unlimited (default).

Line Separator IN String
Optional. String inserted as line separator.

Default: "\r\n" (CR/LF)
Encoded Data OUT String Base64 encoded content of the file

SOAP Base64 Decode To File

Decodes the base64 encoded string into the binary representation and writes the data to the specified
file as binary data.

Exit Paths: Success, Access Denied, Failure

Parameter Dir Type Remarks
Encoded Data IN String Base64 encoded data

Filename IN String Filename and path of the file to which to write the
decoded data.

Append To Existing
File IN Boolean

Checkbox:

False Default. Create new file or truncate existing file.

True Create new file or append to existing file.

Appendix C: Structure of IP Notification Messages

Appendix C: Structure of IP Notification Messages

For the purpose of the SOAP implementation, message transport is not limited to any kind of protocol.
SOAP requests are sent as notifications containing payload data as well as transport-specific out-of-band
information. As HTTP is most frequently used as transport for SOAP requests through the internet, an
ISAPI listener is provided (see SOAP ISAPI Listener Task for IIS). However, any kind of client who "talks"
Notifier could issue SOAP requests. For example, a COM object that allows to directly send SOAP packets
to CIC.

HTTP and Notifier protocols transport SOAP messages between components in the CIC environment.

Since Interaction Processor does not directly support Notifier requests, notifications are used to emulate
the request/response mechanism. The SOAP request notifications use CIC's eSOAP_REQUEST_OBJECT
object type and an object ID that identifies the client. The notification event ("Initiator Event") can either
be explicitly specified or the SOAPAction is will be used as default. The response is sent back to the client
with the object type eSOAP_RESPONSE_OBJECT. The object ID uniquely identifies the client and is used
to send the response back to the right client. The clients use GetNotifierSequenceNumber to obtain a
unique identifier to identify themselves. Clients that do not expect a response must set the ‘Respond'
flag in the request data block to ‘false'. The Message data of the request and response have the
following structure.

Request Message Structure
Field Name Type Description
Version int 2 (Version number of the message structure).

RequestId DWORD Request identifier specified by the client to identify the response.
The server must send it back in the response.

ClientName string Name of the client

Respond bool
False Server must not send a response back to the client.

True Server must send a response to the client.
InitiatorEvent string String of the notification Event-ID. Often same as SOAPAction.

SOAPAction string SOAP Action name
TransportInfoSize DWORD Size in bytes of the transport information data block

TransportInfoData BYTE[]

Transport information data. This is an XML document that encodes
transport specific information. For example, for HTTP it contains
the verb as well as the HTTP header fields. The default character
set is UTF-8, but the data block may contain an XML declaration
with the appropriate encoding attribute.

This field may be omitted (Size = 0). See SOAP ISAPI Filter Schema
for schema details.

PayloadSize DWORD Size in bytes of the SOAP payload data block

PayloadData BYTE[]
This is the data of the SOAP envelope. The default character set is
UTF-8, but the data block may contain XML declaration with the
appropriate encoding attribute.

Response Message Structure
Field Name Type Description
Version int 2 (Version number of the message structure).

RequestId DWORD
Request identifier specified by the client to identify the
response. The server fills this slot with the value in the request
data.

ResultCode enum

Enumeration indicating how the request was processed.

Succeeded (0)

The SOAP request was processed successfully and without
fault.

Failed (1)

The SOAP request failed. This flag is set by the ‘SOAP Send
Response' tool when the body contains a <Fault> element. A
client can thus check for a failed request without having to
unpack the payload.

Unhandled (2)

The Initiator fired, but the handler did not invoke ‘SOAP Send
Response' to return a response (the ‘SOAP Request' handle
went out of scope).
The payload and transport control data are empty.

TransportControlSize DWORD Size in bytes of the transport control data block
TransportControlData BYTE[] Transport control data. This is an XML document that contains

transport specific out-of-band control data. For example, for
HTTP it contains additional HTTP header fields or status codes
to convey special failures. The default character set is UTF-8,
but the data may contain an XML declaration with the
appropriate encoding attribute. Data block may be empty.

PayloadSize DWORD
Size in bytes of the SOAP response payload data block. The
default character set is UTF-8, but the data may contain an
XML declaration with the encoding attribute.

PayloadData BYTE[] This is the data of the SOAP response envelope. The data block
is empty if the ‘Unhandled' flag is set.

Appendix D: SOAP ISAPI Listener Fault Messages

This appendix lists fault messages returned by the SOAP ISAPI Listener. For general information about
SOAP Faults, refer to section 4.4 of the SOAP Specification at W3C. The URL is
http://www.w3.org/TR/SOAP/. SOAP ISAPI Listener may return the following codes:

Client.ContentType

Unsupported Content-Type specified. Expecting "text/xml" or "application/xml".

Client.ContentLength

The 'Content-Length' field of the HTTP header does not match the length of the data sent by
client.

Client.SOAPAction

The HTTP header does not contain a 'SOAPAction' header field.

Client.PayloadSize

The SOAP payload exceeds the maximum size limit configured for the server.

Server.TooBusy

Server is too busy—too many requests are currently pending.

Server.SOAPAction

The SOAPAction is not recognized by the server (e.g. it doesn't match any filter rules).

Server.NotifierConnection

http://www.w3.org/TR/SOAP/

SOAP ISAPI Listener was unable to establish a Notifier connection with the CIC server to forward
the request.

Server.RequestTimeout

The request was not processed by the CIC server in the allotted time.

Server.NotifierConnectionLost

The SOAP ISAPI Listener lost the Notifier connection while waiting for the request to be
processed by the CIC server.

Server.Switchover

A Switchover was initiated while waiting for the request to be processed. The response was lost.

Server.Error

A general error occurred while server was waiting for request to be processed.

Server.Unhandled

The request was not processed by the CIC server (i.e. a handler was initiated but did not send a
response with the SOAP Send Response tool).

Server.Shutdown

The web server was shut down (ISAPI unloaded) while the request was being processed by the
CIC server.

Glossary

This section explains special terms used in this documentation.

CIC Module

One of the many applications that make up the CIC server. These applications have names like manager,
server, and services. For example, Queue Manager, Fax Server, and Directory Services are all CIC
modules.

COM

Microsoft's Component Object Model. The COM specification helps developers create component
software that is compatible with a variety of languages, including C, ADA, Delphi, Java, and Visual Basic.

Customer Interaction Center (CIC)

Customer Interaction Center offers comprehensive interaction management covering not only
telephone calls, faxes, and e-mail messages, but also Internet text chats, Web callback requests, and
voice over IP calls. Using CIC and the PureConnect platform,, enterprises, contact centers, and service
providers can centralize the processing of all customer interactions and provide a new level of service
and consistency.

Denial of Service Attack

Denial of Service (DoS) attacks are attempts to overload a networked computer system so that it
crashes, disconnects from the network, or becomes so overloaded that it cannot respond to legitimate
requests.

DTD

Document Type Definition. A DTD defines the XML tags that can be used in an XML document, the order
in which tags may appear, and limited information about data types. A DTD can be part of an XML
document or can be referenced as an external file. The validating XML parser compares the DTD to the
XML document and flags any errors. DTDs have been deprecated in favor of XML Schemas.

Handler

A program built in Interaction Designer that performs some action or actions in response to the
occurrence of some event. A handler is a collection of steps organized and linked to form a logical flow
of actions and decisions. Handlers are similar in structure to a detailed flowchart. Handlers can start
other handlers called subroutines. A handler contains only one initiator step which identifies the type of
event that will start the handler.

HRESULT Codes

All COM functions and interface methods return a value of the type HRESULT, which stands for 'result
handle'. HRESULT returns success, warning, and error values. HRESULTs are 32-bit values with several
fields encoded in the value. In Visual Basic, a zero result indicates success and a non-zero result indicates
failure. Common HRESULT values are:

Value Error Meaning
0x8000FFFF E_UNEXPECTED Unexpected failure.
0x80004001 E_NOTIMPL Not implemented.
0x8007000E E_OUTOFMEMORY Ran out of memory.
0x80070057 E_INVALIDARG One or more arguments are invalid.
0x80004002 E_NOINTERFACE No such interface supported.
0x80004003 E_POINTER Invalid pointer.
0x80070006 E_HANDLE Invalid handle.
0x80004004 E_ABORT Operation aborted.
0x80004005 E_FAIL Unspecified error.
0x80070005 E_ACCESSDENIED General access denied error.

0x80000001 E_NOTIMPL Not implemented.
0x80020001 DISP_E_UNKNOWNINTERFACE Unknown interface.
0x80020003 DISP_E_MEMBERNOTFOUND Member not found.
0x80020004 DISP_E_PARAMNOTFOUND Parameter not found.
0x80020005 DISP_E_TYPEMISMATCH Type mismatch.
0x80020006 DISP_E_UNKNOWNNAME Unknown name.
0x80020007 DISP_E_NONAMEDARGS No named arguments.
0x80020008 DISP_E_BADVARTYPE Bad variable type.
0x80020009 DISP_E_EXCEPTION Exception occurred.
0x8002000A DISP_E_OVERFLOW Out of present range.
0x8002000B DISP_E_BADINDEX Invalid index.
0x8002000C DISP_E_UNKNOWNLCID Unknown LCID.
0x8002000D DISP_E_ARRAYISLOCKED Memory is locked.
0x8002000E DISP_E_BADPARAMCOUNT Invalid number of parameters.
0x8002000F DISP_E_PARAMNOTOPTIONAL Parameter not optional.
0x80020010 DISP_E_BADCALLEE Invalid callee.
0x80020011 DISP_E_NOTACOLLECTION Does not support a collection.

HTML

Hypertext Markup Language (HTML) is the markup language used to create World Wide Web pages.

IDispatch Interface

The IDispatch interface provides a late-bound mechanism that can be used to access information about
the methods or properties of an object.

Initiator

The first step in a handler that waits for a specific type of event to occur. When that event occurs, the
Interaction Processor starts an instance of any handler whose initiator is configured for that event. An
initiator is a required step that starts a handler. There can be only one Initiator in a handler. Initiator
names describe the kind of event used to start a handler. Initiators can pass information from the event
into variables that can be used within a handler. Subroutine initiators are not configured to watch for an
event. Rather, they start when called from another handler.

Interaction Designer

The CIC graphical application development tool for creating, debugging, editing, and managing handlers
and subroutines.

Interaction Processor (IP)

Interaction Processor is the event processing subsystem of Customer Interaction Center that starts
instances of handlers when an event occurs.

IUnknown Interface

Every COM component implements an internal interface named IUnknown. Client applications can use
the IUnknown interface to retrieve pointers to the other interfaces supported by the component.

Method

A method is a software subroutine that performs some type of data processing on an object in a
computer system. Methods are sometimes called functions. Data can be passed when methods are
called to perform some kind of work. For example, you might call a method named GetStockPrice and
pass it a stock symbol to receive the current stock price as the return value.

Namespace

Since XML allows tags and attributes to be defined as needed, name collisions occur when the same
name is assigned to a tag or an attribute, in different databases. For example, a teacher might define an
element named "Grade" to represent a student's score. In the context of an agricultural operation,
"Grade" could have a different meaning, as in "Grade A" eggs.

Namespaces resolve collision issues by associating XML attribute and element names with a specific
context, or "namespace". A namespace is an identifier that helps computer programs determine
whether identically named elements refer to the same type of data. Using namespaces, a program can
determine that a data element named "Grade" in the "Schoolwork" namespace is different from an
element called "Grade" in the "EggQuality" namespace.

Notifier

The CIC module that acts as a communication center for all other modules. Notifier listens for events
generated by other modules and notifies other interested modules that the event has occurred. Notifier
uses a publish-and-subscribe paradigm.

Package

A SOAP package contains information needed to invoke a web service.

Payload

A payload contains data in XML format that is passed to or from a function. Request payloads contain
everything needed to execute a function, including data and arguments passed as parameters. Response
payloads contain the values that are returned from a function.

Processing Instruction

Processing instructions are read by application-level code (such as parsers) and are used to
communicate information without changing the content of an XML document. For example, <?xml
version="1.0"?> is a processing instruction that indicates that a document conforms to XML 1.0
specifications.

Processing instructions use <?target declaration ?> notation; where target is the name of the application
that should process the instruction, and declaration is an instruction or identifier that is meaningful to
the application. In the above example, xml is a reserved target that identifies XML parsers.

Protocol

A protocol is a set of rules that one computer uses to communicate with another.

Schema

XML Schema are the successor to DTDs for XML. XML schemas describe method calls, and can recognize
and enforce data-types, inheritance, and presentation rules. A schema can be part of an XML document
or can be referenced as an external file.

SOAP

Simple Object Access Protocol. SOAP is an XML-based protocol that requests or receives information
from peer computers in a decentralized, distributed network. SOAP defines the minimal set of
conventions that are needed to invoke code using XML and HTTP.

SOAP is used to invoke methods on servers, services, components and objects in another computer.
SOAP specifies the XML vocabulary needed to specify method parameters, return values, and
exceptions.

TCP/IP

Transmission Control Protocol/Internet Protocol.

Tool

The definition of a single action that can be performed within a handler. This definition includes name,
label, runtime information (DLL and function), possible return codes, and parameters. Tools dragged
into a handler become steps in that handler.

Valid

A valid XML document conforms to a document structure defined by a schema or DTD (Document Type
Definition). Valid documents are well-formed documents that have a DTD or schema applied to them.

Vocabulary

A vocabulary is the set of tags and attributes that are used in an XML document.

Web Service

A web service is a method that can be invoked across the Internet. A web service can perform virtually
any data processing activity, ranging from simple information lookups to complicated business
transactions. SOAP is frequently employed to invoke web services.

Well-Formed

Well-formed documents follow the rules of XML.

WSDL

Web Services Description Language—an XML-based language that defines the functionality offered by a
web service and how to access it. WSDL makes it possible to describe services on CIC so that a
worldwide audience can find and use them. WSDL describes a service, the parameters required to
invoke it, and the location of the endpoint where the service can be accessed.

XML

Extensible Markup Language. XML provides a structured way to define data in plain text format, so that
data can be exchanged between computers.

XSL/XSLT

Extensible Style Language (XSL) is a specification used to transform XML documents into HTML. XSL
Transformation (XSLT) provides similar functionality that transforms XML data into a different XML
structure.

Revisions

CIC 2018 R2

1. Added procedure, Configuring IC SOAP Listener to work with IC 4.0 and 2015 or later.
2. Added procedure, Additional configuration steps required for SOAP Listener when using IIS7.

CIC 2018 R1

1. Rebranded this document to apply Genesys terminology. Colorized source code. Updated
formatting, copyright and trademarks.

2. Deprecated the procedure titled "Install Microsoft SOAP Install Toolkit". Installing the toolkit is
no longer necessary. All SOAP Toolkits were replaced by the Microsoft .NET Framework. SOAP
Toolkits are no longer supported.

CIC 2015 R4

Added information about new <ICServer2> element in configuration file.

CIC 2015 R1

Updated documentation to reflect changes required in the transition from version 4.0 SU# to CIC 2015
R1, such as updates to product version numbers, system requirements, installation procedures,
references to Interactive Intelligence Product Information site URLs, and copyright and trademark
information.

CIC 4.0 SU1 and SU2

No revisions were made to this document.

CIC 4.0 GA

1. Installation should be performed using the CIC 4.0 GA DVD. Do not use an CIC 3.x DVD.
2. Updated copyrights and trademarks in this document.
3. The Installing and Using SOAP Functionality Technical Reference Guide was renamed to CIC and

SOAP API Developer's Guide. The filename was changed from soap.chm to Soap_API_DG.chm.
4. The SOAP Notifier COM API Developer Guide was renamed to SOAP Notifier COM API

Developer's Guide. The file name was changed from soapnotifiercom.chm to
Soap_Notifier_COM_API_DG.chm.

5. Updated setup instructions for minor changes made to installs.

Copyright and Trademark Information

Interaction Dialer and Interaction Scripter are registered trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2000-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Messaging Interaction Center and MIC are trademarks of Genesys Telecommunications Laboratories,
Inc. The foregoing products are ©2001-2017 Genesys Telecommunications Laboratories, Inc. All rights
reserved.

Interaction Director is a registered trademark of Genesys Telecommunications Laboratories, Inc. e-FAQ
Knowledge Manager and Interaction Marquee are trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2002-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Interaction Conference is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2004-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction SIP Proxy and Interaction EasyScripter are trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2005-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Interaction Gateway is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Media Server is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2006-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Desktop is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2007-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Process Automation, Deliberately Innovative, Interaction Feedback, and Interaction SIP
Station are registered trademarks of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2009-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Analyzer is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Web Portal and IPA are trademarks of Genesys Telecommunications Laboratories, Inc. The
foregoing products are ©2010-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Spotability is a trademark of Genesys Telecommunications Laboratories, Inc. ©2011-2017. All rights
reserved.

Interaction Edge, CaaS Quick Spin, Interactive Intelligence Marketplace, Interaction SIP Bridge, and
Interaction Mobilizer are registered trademarks of Genesys Telecommunications Laboratories, Inc.
Interactive Intelligence Communications as a Service℠ and Interactive Intelligence CaaS℠ are trademarks
or service marks of Genesys Telecommunications Laboratories, Inc. The foregoing products are ©2012-
2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Speech Recognition and Interaction Quality Manager are registered trademarks of Genesys
Telecommunications Laboratories, Inc. Bay Bridge Decisions and Interaction Script Builder are
trademarks of Genesys Telecommunications Laboratories, Inc. The foregoing products are ©2013-2017
Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Collector is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Decisions is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2013-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interactive Intelligence Bridge Server and Interaction Connect are trademarks of Genesys
Telecommunications Laboratories, Inc. The foregoing products are ©2014-2017 Genesys
Telecommunications Laboratories, Inc. All rights reserved.

The veryPDF product is ©2000-2017 veryPDF, Inc. All rights reserved.

This product includes software licensed under the Common Development and Distribution License
(6/24/2009). We hereby agree to indemnify the Initial Developer and every Contributor of the software
licensed under the Common Development and Distribution License (6/24/2009) for any liability incurred
by the Initial Developer or such Contributor as a result of any such terms we offer. The source code for
the included software may be found at http://wpflocalization.codeplex.com.

A database is incorporated in this software which is derived from a database licensed from Hexasoft
Development Sdn. Bhd. ("HDSB"). All software and technologies used by HDSB are the properties of
HDSB or its software suppliers and are protected by Malaysian and international copyright laws. No
warranty is provided that the Databases are free of defects, or fit for a particular purpose. HDSB shall
not be liable for any damages suffered by the Licensee or any third party resulting from use of the
Databases.

http://wpflocalization.codeplex.com/

Other brand and/or product names referenced in this document are the trademarks or registered
trademarks of their respective companies.

DISCLAIMER

GENESYS TELECOMMUNICATIONS LABORATORIES (GENESYS) HAS NO RESPONSIBILITY UNDER
WARRANTY, INDEMNIFICATION OR OTHERWISE, FOR MODIFICATION OR CUSTOMIZATION OF ANY
GENESYS SOFTWARE BY GENESYS, CUSTOMER OR ANY THIRD PARTY EVEN IF SUCH CUSTOMIZATION
AND/OR MODIFICATION IS DONE USING GENESYS TOOLS, TRAINING OR METHODS DOCUMENTED BY
GENESYS.

Genesys Telecommunications Laboratories, Inc.
2001 Junipero Serra Boulevard
Daly City, CA 94014
Telephone/Fax (844) 274-5992
www.genesys.com

CIC and SOAP API Developer's Guide

Audience

SOAP stands for Simple Object Access Protocol. SOAP is an XML-based protocol specification that defines
how information can be exchanged between computers. SOAP supplies the conventions used to invoke
methods on servers, services, components and objects. This document introduces XML/SOAP concepts
and explains how SOAP facilitates robust data interactions between CIC and remote web services. SOAP
supplies the conventions used to invoke methods on remote servers, services, components and objects.

This publication is for managers, technical implementers, and other decision-makers who need to
understand the practical implications of SOAP technology in the CIC environment. The introduction is
written for a general audience who may not be familiar with XML or SOAP technology. Subsequent
sections of this document guide technical implementers through the process of preplanning, installing
and configuring the SOAP ISAPI Listener Task and SOAP Notifier COM Components. Instructions for using
the SOAP Tracer utility are also provided.

Organization of Material

This documentation is divided into logical, easy-to-digest sections that gradually introduce concepts and
specific product features. To fully understand the material, we recommend that you read topics in
order. However, most topics are hyperlinked for those who prefer to read in non-linear fashion.

• Introduction to SOAP in the CIC Environment provides short primers on XML and SOAP, and
explains the relationship between XML, SOAP and the Interaction Center platform. It introduces
CIC's SOAP Components.

• Install and Configure SOAP ISAPI Listener explains how to select a host server, apply prerequisite
service packs and hotfixes, and then install SOAP Listener components. This section also explains
how to configure the server to prevent denial of service attacks, and how to modify the
configuration so that only supported SOAPActions are forwarded to CIC for processing.

http://www.genesys.com/

• Install SOAP Notifier COM explains how to install and register components needed to run or
develop third-party SOAPNotifierCOM applications on a desktop PC.

• Appendix A (SOAP Transport Information) describes HTTP schema used to transport SOAP
packets in the CIC environment. This appendix is for advanced readers who are curious about
SOAP transport mechanisms used in CIC.

• Appendix B (SOAP Tools) describes tools in Interaction Designer that process SOAP requests and
responses.

• Appendix C (Structure of IP Notification Messages) explains the notification message format and
protocols used to send requests to and from CIC's Notifier subsystem.

• Appendix D (SOAP ISAPI Listener Fault Messages) is a reference about fault messages returned
by the SOAP ISAPI Listener.

• Special terms used with SOAP technology are defined in a Glossary.
• Revisions describes what's new by release.

Related Documentation

1. CIC and SOAP API Developer's Guide (this document). This paper provides primers on SOAP and
XML, and discusses the components that must be installed to implement SOAP functionality in
CIC.

2. Interaction Center SOAP Listener Setup installs SOAP ISAPI components on an IIS server. We
highly recommend that you read Install and Configure SOAP ISAPI Listener before running the
install.

3. The SOAP Notifier COM Components Install installs and registers component software used by
developers to create high-performance SOAP applications.

4. SOAP Notifier COM setup optionally installs the SOAP Notifier COM API Developer's Guide
(Soap_Notifier_COM_API_DG.chm). This windows help file cross-references the interfaces,
methods, and properties exposed by SOAP Notifier COM objects.

5. SOAP Tools are documented in Interaction Designer help. These help topics appear when a SOAP
tool or toolstep has focus and the F1 key is pressed in Interaction Designer.

Recommended Web Links
XML Home Page at the World Wide Web Consortium (W3C)

http://www.w3.org/XML/

XML Tutorial by W3Schools

http://www.w3schools.com/xml/default.asp

O'Reilly XML.COM

http://www.xml.com/

W3C SOAP specification document:

http://www.w3.org/TR/SOAP/

http://www.w3.org/XML/
http://www.w3schools.com/xml/default.asp
http://www.xml.com/
http://www.w3.org/TR/SOAP/

SOAP Tutorial by W3Schools

https://www.w3schools.com/xml/xml_soap.asp

Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl

Namespaces in XML

http://www.w3.org/TR/REC-xml-names/

Introduction to SOAP in the CIC Environment

Introduction to SOAP in the CIC Environment

This section is for managers and other decision makers who need to understand the practical
implications of SOAP technology in a CIC environment. No prior knowledge of XML or SOAP is required
to understand the concepts presented here. XML and SOAP are standards for information exchange that
were developed for the Internet.

What is SOAP?

SOAP stands for Simple Object Access Protocol. SOAP is an XML-based wire protocol designed for
decentralized, distributed networks such as the Internet. SOAP defines conventions that allow a
computer to invoke a remote procedure in another. These remote procedure calls (SOAP requests) can
be transported using a variety of network protocols.

For example, the SOAP Listener task on an IIS server uses HTTP protocol to transport SOAP messages to
and from the Internet. Applications developed using SOAP Notifier COM components use Notifier
protocol to transport SOAP messages to and from CIC server. SOAP itself is unconcerned with the
protocol used for transport. For this reason, SOAP can be used on many types of computer networks.

SOAP makes it possible for programs running on different computers to request and receive data from
one another in a structured way, even when different operating systems are used. SOAP provides the
XML vocabulary needed to specify method parameters, return values, and exceptions.

SOAP empowers remote computers to start handlers on CIC and receive data from CIC in response.
SOAP extends CIC interoperability to the entire Internet. Anything that "talks" SOAP through HTTP can
communicate with CIC. Any computer platform (Windows, Unix, Linux, Mac, etc.) that can create and
transport a SOAP message request can start a handler on CIC. Depending upon the type of request, the
handler may or may not send back a response containing values looked up by CIC.

For example, a Unix Server might use Enterprise JavaBeans (EJB) to generate a SOAP Message
requesting information about a user's status. When the request is received by CIC, it starts a handler
that looks up the user's status, generates a SOAP response, and transports the response back to the

https://www.w3schools.com/xml/xml_soap.asp
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/REC-xml-names/

requesting server. When the Unix system receives this SOAP payload, it uses another EJB to parse and
process the information.

Conversely, handlers created using CIC's SOAP tools can request data from web services and remote
procedures. For example, a handler might request the current price of a stock from a brokerage service,
check inventory levels from an inventory management system, conduct a credit card transaction, or
obtain a weather report. SOAP support in CIC is implemented by SOAP tools in Interaction Designer that
define initiators, invoke remote procedures, process requests and payloads. SOAP messages are
channeled through a SOAP ISAPI Listener task that runs on an IIS server. Developers can optionally use
SOAP Notifier COM components to develop COM applications that directly invoke SOAP handlers. SOAP
Notifier COM components are compatible with any language/application that supports Microsoft's
Component Object Model. These options are discussed later in this document.

Who uses CIC's SOAP functionality?

SOAP tools support open standards (SOAP, XML, WSDL, etc.) These tools promote interoperability and
are applicable to many types of application development. SOAP tools are primarily used by developers,
advanced handler authors, and professional services personnel. However, the services created using
SOAP tools are another matter. Anyone, anywhere on the Internet is potentially a consumer or provider
of information processed by SOAP handlers. The possibilities are limitless.

For example, an caller might enter a PIN number into an auto-attendant menu created using Interaction
Attendant. In turn, Attendant could start a SOAP handler that passes the PIN number to a remote web
service to look up information that is spoken back to the caller using CIC's text-to-speech capability. A
remote procedure invoked by SOAP can perform any kind of data processing tasks, ranging from a
simple lookups to complex transactions that accept complex data types as input. SOAP does not impose
any limits on the application functionality that can be invoked.

• OAP tools allow developers to create handlers that retrieve data from web services, or which
function as web services. Handler-based services can be described using Web Services
Description Language (WSDL)—an XML-based language that defines the functionality offered by
a web service and how to access it. WSDL makes it possible to describe a service on CIC so that a
worldwide audience can find and use it. WSDL describes the service, all parameters required to
invoke it, and the location (endpoint) where the service can be accessed.

• WSDL's are not available for handler examples included with this release. However, you can
easily create WSDL's to describe the example files.

• SOAP makes it possible for programs written in different languages and running on different
platforms to communicate with each other.

• SOAP integrates CIC with business-to-business interactions and information services.
• Once a SOAP endpoint is exposed to the internet, a handler may call into the endpoint, which

may be on the Internet or an Intranet.

SOAP is not appropriate for low-level, tightly-coupled transactions, due to network latency and the
overhead imposed by the SOAP messaging encoding and decoding. SOAP is best suited for simple, high-
level transactions, such as sending a name and PIN number to a service to obtain an account summary.

SOAP's Request/Response Model

CIC uses a request/response model to process SOAP requests. This mechanism should be familiar to
anyone who has used a web browser.

1. A client (e.g. web browser) connects to a server and passes a request (fetch a web page). The
client then waits for the server to respond.

2. The server responds in one of two ways. It either returns the requested information, or it
responds with an error message that tells the client why the request could not be completed.

3. Once the server has responded to the client, it closes the connection, discards all state
information about the transaction, and listens for another request.

Web Services

In the world of SOAP, the client is a computer program that asks a server (another computer program)
to execute a method (sometimes called a web service).

In CIC configuration, HTTP requests are received by SOAP Listener—an ISAPI DLL that runs on an IIS web
server. SOAP Listener passes requests to the CIC Notifier subsystem for processing. Notifier alerts the
Interaction Processor subsystem, which in turn starts the handler needed to process the
request. Response data from the handler is passed back to the Listener task for transport to the remote
computer.

In general, SOAP Listener translates HTTP requests into notifications and acts as a gatekeeper to prevent
denial of service attacks.

On the receiving end, the response message is decoded and used by the requesting computer in some
way. This low-overhead approach permits a single server to share information with many clients.

Requests and Responses are XML Documents

In order for the request/response model to work, messages must be formatted in a way that both
computers understand. SOAP uses XML to accomplish this.

What is XML?

XML stands for Extensible Markup Language. XML provides a structured way to define data in plain text
format, so that data can be exchanged between computers. SOAP messages are XML documents, which
are just text files formatted according to some very specific guidelines. (SOAP is the specification that
defines the guidelines used to describe remote procedure calls using XML.) XML provides the syntax
needed to define a markup vocabulary—the tags and attributes needed to describe a particular type of
data. XML files can be created using a simple text editor, such as Notepad. XML is more flexible than
comma-delimited or fixed-length formats, since XML encloses information inside descriptive tags in a
tree-based hierarchy. Before a SOAP request can be transported to another computer, the request is
structured using XML so that the remote system can interpret the request in accordance with the SOAP
specification. Responses from the remote procedure are returned as XML documents.

SOAP uses XML to package the data passed to a method, or received as a response. SOAP
itself is nothing more than a set of rules that define how to describe method calls and
return values using XML syntax. XML merely describes data, without consideration for the
way that the data is processed or presented.

To summarize, SOAP defines conventions needed to invoke the methods of a web service. SOAP tools on
CIC allow web services to be created using Interaction Designer. SOAP uses existing transport protocols
(such as HTTP) to transmit an XML payload to another computer. The payload contains everything that
the remote computer needs to execute a function (arguments and data). Services that understand SOAP
requests can be expected to return XML responses in accordance with the rules of SOAP. The
relationship between SOAP and XML can be expressed this way:

SOAP documents are XML documents that conform to a particular specification, allowing the exchange
of messages. Therefore, to understand SOAP, you need a working knowledge of XML.

What is the relationship between XML and markup languages, such as HTML or SGML?

What is the relationship between XML and markup languages, such as HTML or SGML?

If you use the Internet, you probably know that HTML is the markup language used to create World
Wide Web pages. (HTML stands for Hypertext Markup Language.) HTML and XML are both
descendants of an earlier markup language called SGML (Standard Generalized Markup
Language). SGML is a complicated set of rules that define document structures. XML is a subset of
SGML that does the same thing, using fewer rules. Since XML is a less-complicated derivative of SGML,
XML is more easily implemented on large networks such as the Internet. The primary role of XML is to
define data.

XML delivers the power of SGML without the complexity. XML does not utilize features
that make the authoring difficult or costly. Yet XML preserves most of the flexibility and
richness associated with SGML.

Web browsers use a combined parsing and presentation engine that is tolerant of markup
problems. Sloppy markup in HTML pages is ignored or interpreted in a proprietary way. For example, if
a closing tag is omitted in an HTML document, the browser attempts to guess where the closing tag
should have been. If the browser encounters a tag or attribute that it does not recognize (such as a tag
supported by a different brand of browser), the tag or element is ignored.

The loose, uncontrolled nature of HTML makes it impossible to predict exactly how a web page will be
displayed. Browsers attempt to render something on-screen, however odd, rather than display
validation error messages. Since HTML is presentation-oriented, it uses markup tags for formatting as
well as to define structure. The complexity of HTML formatting can make it difficult to locate data in
HTML documents. HTML was not originally designed to provide precise control over the layout of page
elements. To compensate, savvy page designers use tables, style sheets, and DHTML layers to control
the placement of text and graphics. This creates visually-appealing web pages at the expense of clear-
cut document structures. Complex web pages bury data in a mix of structures in the information
stream. The lack of structural consistency in HTML documents makes it difficult for computer programs
to locate, extract or update data. XML resolves this problem, by demanding that document authors get
structure and syntax right.

XML Parsers

XML documents are often parsed to ensure that they are valid and well-formed.

• A well-formed document conforms to the XML specification.
• A valid XML document conforms to a document structure defined by a schema or DTD

(Document Type Definition). Valid documents are well-formed documents that have a DTD or
schema applied to them.

It is important to note the distinction between parsers and browsers. Parsers validate data. Browsers
display information. SGML and XML are focused on parsing documents rather than presenting them.
Parsing is the computer equivalent of reading a document. A parser is a program that reads in a text file,
breaks it down into component parts, and validates the document using rules in a DTD file. Internet
Explorer offers a built-in parser that you can use to validate XML files. For details, see Viewing XML in
Internet Explorer.

DTD stands for Document Type Definition. DTD's define hierarchy structure and elements that can be
used in an XML document. For links to DTD tutorials, see Recommended Web Links.) The role of a parser
is to identify portions of a document that are invalid in terms of structure or syntax. XML and SGML
parsers ensure that documents are coded correctly.

Viewing XML in Internet Explorer or Edge

The tree structure of XML documents is easy to understand when seen visually. Microsoft's Edge and
Internet Explorer 6 (or later) browsers provide a built-in parser that you can use parse, validate, and
view XML files.

Tip: To open an XML file, drag and drop an XML file from Windows Explorer into your
browser's document window. Or, double-click an .xml filename in Windows Explorer.

The figure below shows the sample movie database (sample1.xml) after it has been opened in Notepad
and Internet Explorer. As you can see, Notepad displays the statements appear as they were entered.
Edge and Internet Explorer display a tree of elements, which makes the content easier to view.

Edge and Internet Explorer automatically add DHTML code so that you can expand or collapse nodes in
the tree. Internet Explorer doesn't allow you to do much besides view XML files. However, if you save
your XML file with an extension of .htm or .html, IE will render the data contained in the XML file.

Advantages of XML over HTML

XML syntax closely resembles HTML; data is enclosed between opening and closing tags. However, XML
is more flexible than HTML:

• XML encodes data in tightly-validated tree structures. Data is easy to locate since its context is
well defined by tags and rules of structure.

• HTML attempts to control the appearance and presentation of data, while XML does not. XML
defines data separately from its presentation. This makes XML data easier to locate and
manipulate.

• XML is a standard data format that permits applications to exchange information across
platforms and operating systems. HTML is markup used to display information in a web browser.

• XML is open and extensible. XML authors can create their own tags. HTML is limited by a fixed
vocabulary that browser developers have agreed to support. In fact, XML has no predefined tags
of its own. New XML tags are defined as needed —to define any type of data using syntactical
rules that that permit browsers and XML Parsers to interpret proprietary tags on the fly. XML
can describe any kind of data, such as a row in a table, a chemical formula, a financial
transaction, a short story, or an object that exposes methods and properties—with equal
finesse.

• Since XML is plain text, it is easily transmitted between computers and through firewalls. XML is
more secure than binary files, since text files cannot be executed directly. Binary files, on the
other hand, can contain malicious computer programs.

• XML is universally compatible. The XML file format is not tied to any particular program,
operating system, database, or network. XML can be used by non-web applications to store
data.

• XML files can be transformed into other types of documents. Transformation is controlled using
XSL style sheets.

Extensible Style Language (XSL) is a specification used to transform XML documents into HTML.
XSL Transformation (XSLT) provides similar functionality that transforms XML data into a
different XML structure. For these reasons, XML is becoming the preferred format for e-
commerce and information exchange between computers of all types. XSL style sheets can
reorder documents, display or hide information, or apply formatting, among many other things.
XSL uses patterns and logical operations to determine which parts of a document tree it should
transform. XSL works somewhat like a programming language—it can test for equality and
perform processing based upon the results of a test.

Structure of an XML file

An XML file is just a structured text file. The best way to understand XML is to look at example
files. Listing 1 below contains three records from a movie database. Each record contains two fields:
the title of a movie, and its genre.

The example file is formatted using blank lines, tabs and white space that make the file easier to
read. In practice, those items are ignored by XML parsers. Likewise, bold text and line numbers in the
listing are for illustration purposes only. Actual XML files do not contain line numbers.

Listing 1: Sample XML File

1 <?xml version="1.0"?>

2 <movies>

3 <movie>

4 <title>The Ghost and Mr. Chicken</title>

5 <genre>Comedy</genre>

6 </movie>

7 <movie>

8 <title>Gone with the Wind</title>

9 <genre>Drama</genre>

10 </movie>

11 <movie>

12 <title>ThunderBall</title>

13 <genre>Adventure</genre>

14 </movie>

15 </movies>

XML Declaration

Line 1 contains a processing instruction known as the XML declaration. This statement tells parsers that
the file contains XML. The remainder of the file is composed of XML elements. Each element consists of
a start tag and an end tag. XML data is just information that appears between tags.

The terms tag and element are often used interchangeably. A tag is an identifier that defines
something. An element is an instance of a set of tags. In our example, <title> is a tag, and <title>Gone
with the Wind</title> is an element. Elements are the basic building blocks of HTML files. Elements can
be nested inside of other elements.

Rules that govern tags

Tags are governed by a few basic rules:

• Tag names are case-sensitive. <movie>, <Movie>, and <MOVIE> are not equivalent. Attribute
names are also case-sensitive.

• Tag names must begin with an alphabetic character, an underscore, or a colon.
• Tag and attribute names cannot begin with "xml", which is reserved.
• All tags must be closed. A start tag must be closed by a corresponding end tag. Empty elements

with no attributes can use a backslash as a shortcut for the end tag (e.g. <movie/> is equivalent
to <movie></movie>.

The Root Element

Line 2 defines the root element. Since an XML document is a tree of elements, each document has a
single root element that denotes the beginning and end of the XML statements in the file. In the
example, the root element begins with a start tag <movies> and is closed by an end tag </movies>. All
other elements are nested inside the root element.

Child Elements

Line 3 identifies <movie> as a child of the <movies> root element. Parent-child relationships are
common in XML files. Parent elements can have many children. All elements must be properly closed,
meaning that each element has a start tag and an end tag. Likewise, tags must be balanced. The close
tag of a child cannot appear after the close tag of its parent. For example:

<title>ThunderBall<genre>Adventure</title></genre> is incorrect.

<title>ThunderBall<genre>Adventure</genre></title> is correct.

Line 4 contains some data (the title of a movie) between tags that identify the data.

Line 5 contains a different data item. In this case, it is a movie category between genre tags.

Line 6 closes this movie element.

This basic structure is repeated in lines 7 through 14, which define two more records.

Line 15 contains the closing tag for the root element.

Structure of SOAP Messages

Structure of SOAP Messages

SOAP messages are constructed
using a framework that describes
what is in a SOAP message, and how
it should be processed. This is
known as the SOAP envelope.

SOAP messages may contain
encoding rules, which express
instances of application-defined
data types. Remote procedure calls
and responses are also described in
a SOAP message. As mentioned
earlier, there are two types of SOAP
messages:

• Request messages ask a
remote process to perform
some sort of processing.

• Response messages are
replies from a remote
process that return data or
an error message that
indicates why the request
could not be processed.

The payload contains data in XML
format that is passed to or from a
function. Request payloads contain
everything needed to execute a
function, including data and
arguments passed as parameters.
Response payloads contain the
values that are returned from a
function. SOAP uses XML to express
payload information accurately and
concisely. Every SOAP message has a
main envelope section, which can
contain header and body sub-
sections.

Envelope Section

The envelope is always the outer most element. Everything else in a SOAP message appears inside
SOAP-ENV tags. The envelope in Listing 2 is empty—it doesn't contain any header or body tags.

Listing 2: SOAP Envelope Elements

1 <SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"

2 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

3 </SOAP-ENV:Envelope>

1. Line 1 of the envelope refers an external XML namespace (xmlns) that defines elements and
attributes that can appear in the envelope (such as header or body elements).

2. Namespacesresolve collision issues by associating XML attribute and element names with a
specific context, or "namespace". A namespace is an identifier that helps computer programs
determine whether identically named elements refer to the same type of data. Using
namespaces, a program can determine that a data element named "Grade" in the "Schoolwork"
namespace is different from an element called "Grade" in an "Egg Quality" namespace.

3. Most SOAP envelopes refer to XML schema defined by the W3C. It is very common to see
http://schemas.xmlsoap.org/soap/envelope/ as the namespace reference in a message
envelope.

XML Schema are the successor to DTDs for XML. XML schema describe method calls, and can
recognize and enforce data-types, inheritance, and presentation rules. A schema can be part of
an XML document or can be referenced as an external file.

4. Line 2 refers to encodingStyle schema that describes basic data types (Booleans, Integers,
Strings, etc.) that can be passed to a remote procedure call. SOAP messages typically define
encoding rules using the W3C schema at http://schemas.xmlsoap.org/soap/encoding/.

5. Line 3 closes the envelope.

Header Section

As mentioned earlier, the envelope can contain header and body sections. These are defined using
Header and Body elements. Listing 3 shows a SOAP message with empty Header and Body sections.

Listing 3: Header and Body Sections of a SOAP Envelope

1 <SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"

2 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/

3 <SOAP-ENV:Header>

4 </SOAP-ENV:Header>

5 <SOAP-ENV:Body>

6 </SOAP-ENV:Body>

7 </SOAP-ENV:Envelope>

As you can see, lines 3-4 define the Header section. Lines 5-6 define the Body. Other independent
elements can optionally be defined inside the envelope, but for purposes of this discussion, we do not
need to be concerned with independent elements. Refer to the W3C SOAP Specification at
http://www.w3.org/TR/SOAP/ for more information about independent elements.

The Header section can contain meta data about the message. Meta data is "data that describes data".
A SOAP message does not have to contain a Header. Header elements make it possible to extend the
base SOAP protocol, to accommodate needs that the SOAP specification does not include.

For example, Header elements might maintain session information between a server and a client, or
might contain authentication information about a transaction. A Header can contain any number of
namespace-qualified child elements, each of which extends the default protocol in some way. Each
header element provides extra content for processing the Body of the message.

Each Header element may be annotated with a "mustUnderstand" attribute, which indicates whether or
not the element is mandatory. When "mustUnderstand" is True for an element, the server that
processes the message must know how to interpret that element. If it doesn't, it must reject the
message. Headers that do not have a "mustUnderstand" attribute, or which have this attribute set False,
are considered to be optional, meaning that the recipient server is allowed to process the message as
best it can.

Body Section

The most important part of a SOAP message is the Body section, since it contains the message's payload.
In a request message, the Body defines the method to execute, and parameters that must be passed to
it. The Body of a response message contains references to the method called, and return values from the
method. If an error occurs, the response contains information about the fault. To better understand
these concepts, let's look at some actual request/response messages. The request message in Listing 4
invokes a simple method that adds two numbers. Listing 5 contains the response from the web service.

Request Messages

Listing 4: Request to Invoke Add Method

1 <SOAP-ENV:Envelope

2 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

3 SOAP-4
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

5 <SOAP-ENV:Body>

http://www.w3.org/TR/SOAP/

6 <m:Add xmlns:m="uri:my-calculator">

7 <Parameter1>2</Parameter1>

8 <Parameter2>3</Parameter2>

9 </m:Add>

10 </SOAP-ENV:Body>

11 </SOAP-ENV:Envelope>

The m:Add method name element in line 6 contains the name of the method (Add) we wish to call, and
the namespace it is found in (uri:my-calculator). The URI (Universal Resource Indicator) specifies which
computer offers an Add method web service.

Lines 7-8 define two arguments (Parameter1 and Parameter2) that the Add method requires. In this
example, the numbers to be added are 2 and 3.

Line 9 closes the method name element.

Response Messages

The response from the computer at uri:my-calculator is listed below. This response message contains
return values from the Add method. By convention, "Response" is appended to the name of the method
called. However, the format of the method name can also be defined using WSDL.

Listing 5: Response from the Add Method

1 <SOAP-ENV:Envelope

2 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

3 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

4 <SOAP-ENV:Body>

5 <m:AddResponse xmlns:m="uri:my-calculator">

6 <Result>5</Result>

7 </m:AddResponse>

8 </SOAP-ENV:Body>

9 </SOAP-ENV:Envelope>

Line 5 identifies the remote procedure call. The Result tag in line 5 contains the sum of 2+3, which is 5.
Note that the response message does not contain any of the data passed to call the function. Responses
contain a return value from the function, or a fault message that indicates why the function call failed.

Fault Messages

When a message is rejected, the server generates a Fault, or error message. Faults are commonly
caused by unrecognizable header fields, messages that cannot be authenticated, or problems that
occurred when the server attempted to invoke a method or process the message.

Listing 6: A Typical Fault Response Message

<S:Envelope xmlns:S='http://schemas.xmlsoap.org/soap/envelope/'>

 <S:Body>

 <S:Fault>

 <faultcode>S:Server</faultcode>

 <faultstring>S:Server</faultstring>

 <detail>

 <e:mydetails xmlns:e="http://foo.com/detail">Some Error
Message</e:mydetails>

 </detail>

 </S:Fault>

 </S:Body>

</S:Envelope>

CIC's SOAP Components

CIC's SOAP Components

The SOAP components in a Customer Interaction Center environment are:

1. Interaction Designer SOAP Components: When Interaction Designer is installed, SOAP tools,
SOAP Tool help, and a SOAP message trace utility are installed to the
C:\I3\IC\Install\Admin\IC_Admin directory on the CIC server.

SOAP tools are implemented in a dynamic link library named SOAPToolsIDA.DLL. When
Interaction Designer starts up, it adds the tools defined in this DLL to Interaction Designer's tool
palette. SOAP Tools are always installed with Interaction Designer. See SOAP Tools in Interaction
Designer for more information. Context-sensitive online help for SOAP tools is available in
Interaction Designer. Soap help topics are displayed when a SOAP tool has focus in Interaction
Designer and the F1 key is pressed.

2. SOAP Tracer Utility: (SOAPTracerA.exe) is optionally installed with Interaction Designer when
the "SOAP" option is selected. It permits users to "spy" on SOAP notification traffic. Soap Tracer
displays request and response packets in a list and allows inspection of request and response
payloads. For usage information, see SOAP Tracer Utility later in this section.

3. The SOAP ISAPI Listener: Task is responsible for parsing incoming SOAP requests, dispatching
requests to the appropriate method, and packaging return values into outgoing SOAP responses.
This process runs on an IIS Server. See SOAP ISAPI Listener Task for IIS later in this section.

4. SOAP Notifier COM Objects issue SOAP notifications from automation compatible applications.
These components provide a high-performance method of initiating handlers without incurring
the performance penalty of HTTP-based Listener operations. Third-party applications created
using the SOAP Notifier COM components can directly create and forward packets to Interaction
Processor, bypassing the need to create packets received using HTTP and the Soap Listener task.
See SOAP Notifer COM Objects later in this section.

SOAP Tools in Interaction Designer

This topic summarizes SOAP-related tools in Interaction Designer that create handlers to process SOAP
requests or responses. For additional information, see Appendix B: SOAP Tools.

Initiator Tools

SOAP Initiator

This initiator triggers if the "Notification Event" of the request matches a specified string. The
Notification Event on which the Initiator triggers is specified in the property dialog.

Request Tools

SOAP Get Request Info

Queries some information from the request handle.

SOAP Abort Request

Aborts the request. Aborting a request is useful if a SOAP request handler is registered as a
Monitor handler.

SOAP Get Transport Info

Returns an XML document containing transport specific (header) data. It allows the client to
include any kind of out-of-band data in the request.

SOAP Expects Response

Takes a different exit path depending on whether the SOAP request requires a response (YES) or
not (NO).

SOAP Parse Request Payload

Parses the payload of the request into an XML document.

SOAP Send Response

Sends the specified payload as response to the sender of the request. To support transport
specific features, the "Transport Control Data" argument takes an XML node whose content will
be sent back to the client. It can be used to send transport specific out-of-band data to the
client.

Payload Processing Tools

SOAP Create Envelope

Creates a new SOAP envelope.

SOAP Get Body

Retrieves the Body element from the SOAP envelope. A body must exist. If it can't be found, the
tool exits through "Failure" and attaches error information to the envelope.

SOAP Get Body Element

Retrieves the first body element that matches the given base name and namespace.

SOAP Add Body Element

Adds an entry to the body of the SOAP envelope.

SOAP Query Encoding Style

Matches a space separated list of URIs against the "encodingStyle" attribute of the given
element. If the element doesn't have an ‘encodingStyle' attribute, the parent of the element is
checked and so on, until an element with an "encodingStyle" attribute is found. If that attribute
contains any of the specified encoding style URIs, the tool returns through "Found" and returns
the style that was found.

SOAP Get Header

Retrieves the header element from the SOAP envelope if it has one.

SOAP Get Header Element

Retrieves the first header element that matches the given base name and namespace. Returns
the first element in the header if neither a name nor namespace is given. Takes "Not Found" exit
if the envelope doesn't have a header or the element can't be found.

SOAP Get Header Elements

Returns iterator to a list of header elements filtered by the given arguments. Takes the "None"
exit if envelope has no header or none of the header elements matched the filter criteria.

SOAP Add Header Element

Creates a header element and adds it to the given envelope. If the envelope does not have a
header, one is inserted before the Body element.

SOAP Get Fault

Retrieves fault information from the SOAP envelope. If there is no style="color:
#0e5470;"><Fault> element in the envelope, the "No Fault" exit is taken and NULL elements and
empty strings are returned.

SOAP Set Fault

Adds a style="color: #0e5470;"><Fault> element to the envelope or replaces an existing one.

SOAP Create Fault Response

Copies the request envelope and replaces all children of the style="color: #0e5470;"><Body>
element with a single style="color: #0e5470;"><Fault> element. It combines the functionality of
the "SOAP Create Envelope" tool with the functionality of the "SOAP Set Fault" tool.

SOAP Get RPC Parameter

This is a convenience tool for cracking RPC requests. It retrieves a parameter element (child)
from the first element in the <Body> element (method in an RPC request). It returns the first
element that matches all of the specified arguments.

SOAP Add RPC Parameter

This is a convenience tool for composing RPC requests or responses. It adds a parameter
element to the first element in the body of the envelope, which represents the method in RPC
requests. Use the XML tools to add complex data (not just a string) to the parameter by
manipulating the returned "Parameter Element" node.

SOAP Get RPC Method Info

This is a convenience tool for cracking RPC requests. It retrieves the first child element of the
SOAP <Body> element (Method element in RPC requests). It returns a collection containing the
child elements of the method, which constitute the method arguments.

SOAP Get Next RPC Parameter

This tool returns the element node at the current iterator position and returns an iterator to the
next position.

SOAP Create RPC Response

This is a convenience tool for composing the response envelope for an RPC request. It copies the
source envelope and replaces the method element in the body with an element that has the
same name but "Response" added to its name. It also adds a <Result> element as child of the
method element.

SOAP Set Element Type

In SOAP, the type of an argument or the return value is specified by the service description and
doesn't need to be included in the payload. However, the service may define the type as
xsd:anyType, for VARIANT types. This tool allows you to include the type in the argument.

SOAP Create Array

Turns an element, for example an RPC parameter, into a SOAP array. The array is created for
values supplied as list of strings or just a number of empty elements that can be populated with
complex data.

Invocation Tools

SOAP HTTP Request

This tool issues an HTTP request to the specified URL with the SOAP request envelope as
payload. The response body is parsed and returned as response envelope.

Helper Tools

SOAP Base64 Encode

Converts a supplied UNICODE string to the specified character set (default = UTF-8) and encodes
the resulting data into a Base64 string. Characters that cannot be translated to the destination
character set will be represented as ‘?'. Wide character sets, such as UTF-16 are currently not
supported.

SOAP Base64 Decode

Decodes the base64 encoded string into the binary representation and converts it to UNICODE
based on the specified character set.

SOAP Base64 Encode File

Reads the specified file as binary data and encodes it into a base64 string. This tool can be used
to send any kind of data through SOAP requests. For example, you could encode a wave file in a
SOAP message.

SOAP Base64 Decode To File

Decodes the base64 encoded string into the binary representation and writes the data to the
specified file as binary data.

The SOAP Tracer Utility

The SOAP Tracer Utility

SOAP Tracer is used to debug SOAP requests and responses. It displays notifications exchanged between
the client (SOAP Notifier COM or ISAPI listener) and the CIC server. It spies on SOAP notification
messages. It records and displays request and response packets in a list and allows inspection of request
and response payloads. Filtering for particular SOAP actions or clients is not supported in the current
release, but may be added in the future. SOAP Tracer is optionally installed on the CIC server when
Interaction Designer is installed—if the "SOAP" option is selected. It can be used from any machine that
has access to a CIC server through a Notifier connection. However, SOAP Tracer is unrelated to
Interaction Designer. It is also unrelated to ISAPI Listener.

IMPORTANT—Do not run SOAP Tracer for extended periods of time. It can consume a lot of memory
and may degrade performance of CIC.

Starting SOAP Tracer

The default shortcut created under Program Files > PureConnect > SOAP Tracer is:

C:\I3\IC\Install\Admin\IC_Admin\SOAPTracerAD.exe /notifier=localhost

To run this utility, press the Start button, then select Programs > PureConnect > Soap Tracer. SOAP
Tracer optionally accepts the command line arguments listed below.

Command Line Arguments

/NOTIFIER=<hostname>

Hostname or IP address of the Notifier server. Default: default Notifier server of the user.

/USER=<username>

User name of the CIC user. Default: current user

/PASSWORD=<password>

Password of the CIC user.

/TEMPDIR=<directory>

Directory in which to store the temporary files generated by the utility. Default is the system's
TEMP directory.

/STARTCAPTURE

If this argument is specified, the SOAP Tracer immediately starts capturing SOAP notifications. If
not specified, the capture must be started by selecting Start Capture from the Tools menu, or by
pressing the corresponding tool bar button for this command.

/KEEPTEMPFILES

By default, temporary files used to store the SOAP payload are deleted when the traces are
cleared or the utility is exited. When this switch is specified, SOAP Tracer won't delete its
temporary files automatically.

SOAP Tracer's User Interface

The SOAP Tracer window is divided into three panes. Users select a message in the top pane to display
corresponding request and response messages in the other panes.

The Request List Pane

The top pane is the Request List. It displays information about SOAP requests. such as the name of the
client who issued the request, the time, and whether or not the request succeeded. This pane contains
the following columns:

Request Timestamp (UTC)

Date and time in UTC when request notification was recorded.

Initiator Event

Notification Event of the request (often same as SOAP Action).

SOAP Action

SOAP Action of the request.

Client

Name of the client issuing the request.

Client ID

Dynamic identifier of the client.

Request ID

Identifier of the request (generated by and scoped to client).

Request Size

Size of the request payload (SOAP envelope) in bytes.

Result Code

Result code returned by the server.

Succeeded

Request successfully processed

Failed

Request failed, server returned SOAP fault

Unhandled

Request was not handled by the server

Response Timestamp (UTC)

Date and time in UTC when response notification was recorded

Duration

Difference between Response Timestamp and Request Timestamp

Response Size

Size of the response payload data in bytes.

Key Term—A payload contains data in XML format that is passed to or from a
function. Request payloads contain everything needed to execute a function,
including data and arguments passed as parameters. Response payloads contain
the values that are returned from a function.

The Request Payload Pane

The Request Payload pane displays XML payload data that was sent to the handler for the selected
request.

The Response Payload Pane

The Response Payload pane panes display payload data that was sent back to the client by the handler.

Menu Commands

File > Exit

Closes Soap Tracer.

View > Transport Info Data

Displays a dialog containing the transport info data of the request. This option is enabled if the
SOAP request notification included transport information data.

View > Transport Control Data

Displays a dialog containing the transport control data of the response. This option is enabled if
the SOAP request notification included transport control data.

View > Follow Requests

If checked, the selection in the request list will follow the recorded requests and always select
the most recent one.

View > Toolbar

Hides or displays toolbar icons.

View > Status Bar

Hides or displays the status bar.

Tools > Start Capture

Starts recording the SOAP notification traffic.

Tools > Stop Capture

Stops recording the SOAP notification traffic.

Tools > Clear View

Clears the list of recorded SOAP notifications.

Tools > Settings

Displays dialog used to configure the application. This feature is disabled in the current release.

Help > About SOAPTracer…

Opens a dialog that displays copyright information.

Toolbar

Some SOAP Tracer commands have tool bar equivalents.

Tool bar icons in SOAP Tracer.

SOAP ISAPI Listener Task for IIS

SOAP ISAPI Listener translates HTTP SOAP packets into notifications and sends them to the CIC server.
The SOAP ISAPI Listener must be installed on a machine that has IIS installed.

What is a Listener?

A listener receives incoming HTTP messages that contain SOAP requests for some type of service. It
parses these messages, decides whether to process the request (based upon threshold values and filter
configurations), and dispatches the request to the appropriate method for processing. If the service
returns a response, the listener packages the response into an HTTP payload, and sends that back to the
client. A listener also handles requests for WSDL information about web services.

The SOAP ISAPI Listener looks at incoming SOAP requests, decides whether requests should be
forwarded to CIC to invoke a handler, and forwards appropriate requests to CIC's Notifier subsystem,
which in turn calls Interaction Processor to invoke the handler associated with the initiator specified in
the incoming message. SOAP ISAPI listener and packages return values from handlers into outgoing
HTTP responses, and sends them to the client. If the listener decides not to forward a request to CIC for
processing, it returns a fault message (SOAP and/or HTTP) to the requesting client application.

What is ISAPI?

The SOAP ISAPI Listener is sometimes called the SOAP ISAPI DLL, since it is a dynamic link library
developed in conformance with Microsoft's Internet Server Application Programming Interface (ISAPI).
ISAPI allows developers to extend the functionality of Microsoft's Internet Information Server (IIS). The
component that implements the ISAPI Soap Listener task is I3SOAPISAPIU.DLL. This DLL is installed by
the Interaction Center SOAP Listener Install to the IIS server of your choice. It translates HTTP requests
into notifications and acts as a gatekeeper to prevent denial of service attacks. An ISAPI DLL is not a
COM DLL. To invoke an ISAPI DLL, it must be explicitly referenced in a HTTP header. For example:

http://www.foo.com/virtual_directory_name/I3SOAPISAPIU.DLL

The virtual directory name is optional, so long as the server can resolve the location of the DLL.

What is an endpoint?

SOAP invokes methods at HTTP endpoints. An endpoint is a URL that uniquely identifies a namespace
URI (Universal Resource Indicator), and the name of the method to execute (known as the NCName).
Consider the following endpoint:

uri:my-calculator#Add"

The URI namespace (my-calculator) identifies the code module that contains the method to be called
(Add), just as an interface name scopes a method in Java, CORBA, or COM. The namespace and the
method name are separated by a pound sign.

When a SOAP request is transported to invoke the method, the endpoint name is passed in the
SOAPMethodName header of the HTTP POST request. Consider the following sample HTTP header:

POST /objectURI HTTP/1.1

Host: www.foo.com

SOAPMethodName: urn:foo.com:my-calculator#Add

Content-Type: text/xml

Content-Length: nnnn

The HTTP header indicates that the Add method (from the urn:foo.com:my-calculator namespace)
should be invoked against the endpoint identified by http://www.foo.com/objectURI.. The rest of the
HTTP request is an XML document that contains additional information needed to invoke the request,
such as parameters passed to the method. The server-side software that receives the request (e.g. the
SOAP ISAPI Listener) is responsible for processing the request. Unlike other RPC protocols, SOAP doesn't
define specific actions that must occur when a request is received. It leaves the implementation details
to the process running at the endpoint. See http://www.w3.org/TR/REC-xml-names/

SOAP Notifier COM Objects

SOAP Notifier COM is a set of software components that allow custom applications to invoke handlers.
SOAP Notifier COM objects issue SOAP notifications from automation compatible applications.
Microsoft's .NET framework makes it possible for programmers to invoke a web service as if they were
invoking a method of an object. SOAP Notifier COM components provide a high-performance method of
calling handlers without incurring the performance penalty of HTTP-based Listener operations. Third-
party applications created using the SOAP Notifier COM components can directly create and forward
packets to Interaction Processor, bypassing the need to create packets received using HTTP and the
Soap Listener task. These packets that are identical to those created by SOAP ISAPI Listener. However,
the process is faster than HTTP-based Listener operations.

SOAP Notifier COM is appropriate for Windows client workstations that can run COM applications. It is
not appropriate for operating systems (Linux, for example) that do not support COM. SOAP Notifier
COM Components Setup registers SOAP Notifer COM API components on desktop PCs used to develop

http://www.w3.org/TR/REC-xml-names/

or run SOAP Notifier COM API applications. Soap_Notifier_COM_API_DG.chm is the SOAP Notifier COM
API Developer's Guide. It describes interfaces, methods, and properties of the SOAP Notifier COM API.
You will find this publication in the System APIs section of the PureConnect Documentation Library.

ISoapConnector: the MSSOAP Notifier Connector

ProgId: ININ.MSSOAPNotifierConnector

The SOAP Notifier COM API provides a component named ISoapConnector that is used to initiate SOAP
handlers. Programmers can invoke a web service as easily as invoking a method on an object. The VB
example below shows how to use the transport. It is assumed that a WSDL file with the service
description exists, since this is required for MSSOAPLib.SoapClient. Instead of the SoapClient, you may
use the MSSOAPLib.SoapSerializer and MSSOAPLib.SoapReader objects with any object that uses a
ISoapConnector.

Dim objTransport As New SOAPNotifierCOMLib.SOAPNotifierTransport

objTransport.Connect "<Notifier>", "<AppId>", "<user>", "<password>",
"<ClientName>"

Dim objClient As New MSSOAPLib.SoapClient

objClient.ClientProperty("ConnectorProgID") = "ININ.MSSOAPNotifierConnector"

objClient.mssoapinit "<WSDL filename or URL>"

objClient.ConnectorProperty("Transport") = objTransport

Result = objClient.<method>(<arguments>...)

Properties

SOAP Notifier Connector supports the following properties:

Transport

Transport object to be used for server communication. Must be set before the first invocation.

SOAPAction

SOAP Action used in the request. If not defined (empty string), uses value from the WSDL file.

InitiatorEvent

Initator Event (notification event) of the request notification. If not specified or as default, the
SOAPAction is used. Changing the SOAPAction also resets this property, unless the
PreserveInitiatorEvent property is set. If the SOAPAction has never been set or is an empty
string and the value from the WSDL file is used, the InitiatorEvent is reset after each request
(again, unless PreserveInitiatorEvent is True).

https://help.genesys.com/cic/desktop/system_apis.htm
https://help.genesys.com/cic/desktop/welcome_page.html

PreserveInitiatorEvent

If True, changing the SOAPAction does not change the InitiatorEvent property.

RequestTimeout

Maximum amount of time to wait for response in milliseconds. Value < 0 = infinite. Default =
60000 (1 minute).

TransportInfo

Write only. Transport info data. Must be object implementing IStream.

TransportCtrl

Read only. Transport control data, returns IUnknown of an object implementing IStream. Can
only be retrieved after invocation until the object using the connector calls the ‘BeginMessage'
method of the connector (usually, as part of the next invocation).

ResponseObject

Read Only. Returns the ISOAPResponse object resulting from the request. Can only be retrieved
after invocation until the object using the connector calls the ‘BeginMessage' method of the
connector (usually, as part of the next invocation).

Related Topics

Appendix C: Structure of IP Notification Messages

Install and Configure SOAP ISAPI Listener

Install and Configure SOAP ISAPI Listener

The components of SOAP follow the client/server model. Some components are installed when
Interaction Designer is installed on the CIC Server. Other components are installed on IIS web servers
and client PCs. This section explains how to install and configure SOAP Tools, SOAP Tracer, SOAP
Listener, and Soap Notifier COM components.

• SOAP Tools Installation: When Interaction Designer is installed (as part of the CIC Admin setup),
new SOAP tools are added to Interaction Designer's tool palette. SOAP tools are implemented in
a DLL (SOAPToolsIDA.DLL) that is installed with Interaction Designer. Appendix B in this
document also contains a summary of each SOAP Tool.

• SOAP Tracer Installation: The Soap Tracer Utility (SOAPTracerA.exe) is optionally installed if the
"SOAP" option is selected during installation of Interaction Designer.

• SOAP ISAPI Listener Installation: The Interaction Center SOAP Listener Install installs the SOAP
Listener Task on an IIS server. The SOAP Listener task is an ISAPI DLL. Installation requires
preplanning on your part to address security and configuration issues, and some post-

installation work to customize the default SOAP filter configuration. The SOAP ISAPI DLL must be
installed on a server running Microsoft Internet Information Server (IIS), version 5 or later.

Installation and configuration pre-planning

This section describes issues that SOAP implementers must resolve before installing ISAPI SOAP Listener
on an IIS server. Security issues are particular important to consider if you plan to pass SOAP requests
across the Internet.

1. Select a server to host SOAP ISAPI Listener.

The SOAP Listener task is an ISAPI DLL that you must install on a computer running Microsoft's
Internet Information Server (IIS) service. SOAP Listener uses IIS (version 5 or later) solely for
HTTP operations. It does not consume other IIS services. You can install this task on a dedicated
IIS server, or on a CIC server that is running IIS. Before choosing a platform, you should carefully
consider security, performance, and capacity issues.

SOAP Listener will work if it is installed on a CIC server running IIS. Theoretically, this could
improve performance by eliminating latency between CIC and a dedicated IIS server. In practice,
performance could be degraded if the CIC server becomes too highly tasked, and this
configuration could compromise network security. As a rule of thumb, do not install SOAP ISAPI
Listener on a CIC server unless:

Port 80 HTTP traffic is tightly controlled (e.g. SOAP will be used exclusively for interactions
between servers inside a firewall). This is appropriate for some corporate Intranets. Use a
different port than 80 (e.g. 8080) that is blocked by the firewall. SOAP requests will not be
received from the Internet, or use another port. The CIC server has the capacity to run IIS
without degrading performance.

If SOAP requests will be received from the Internet, you should install SOAP ISAPI Listener on an
IIS server in a DMZ (Demilitarized Zone) between two firewalls. This can be an existing CIC/web
server or a dedicated web server.

2. Open port 2633 on the firewall between the DMZ and the Intranet on which the CIC server is
located, so that Notifier traffic can pass between the CIC server and the SOAP listener. Do not
open port 2633 to the Internet.

What is a Demilitarized Zone?
In an Internet-connected world, any public access server, such as a web server that
connects outside of an internal network is unprotected against hacking. A public
access server can expose the rest of a network to potential intrusion.
Demilitarized zones (DMZ) reduce security risks by using multiple firewalls to
delimit an internal network from publicly connected devices, such as web servers.
A DMZ configuration protects both public servers and the internal network. The
first firewall isolates essential Internet services (web, email, DNS, etc). The second
firewall protects the internal network.
A DMZ is not the only solution that you might employ to protect your network. It is
completely acceptable to use different security measures. The exact method is up
to you—be reminded that if you connect a server to the outside world, you must
manage the risk that your internal network might be penetrated through a public
server.

3. Apply service packs and hotfixes to IIS.

Network security is a topic outside the scope of this paper. However, we strongly recommend
that you keep server operating system and IIS software up-to-date. Apply Microsoft service
packs and hot fixes regularly. Hackers frequently exploit known security holes that you can close
by applying free software updates. You can automate this process to a limited extent. For
example, Microsoft's HFNETCHK is an executable that runs on your server. It retrieves an XML
file that contains information about security hot fixes that your system might need. Browse
Microsoft's web site (http://www.microsoft.com/security) for security bulletins, upgrades and
other information. As a rule of thumb, you should not install services that you do not need.
Subscribe to "NTBugtraq" or a similar discussion list. This mailing list discusses security exploits
and security bugs in Windows NT, Windows 2000, and Windows XP plus related applications. To
sign up, visit http://www.ntbugtraq.com/.

4. Decide how to configure SOAP Listener to prevent DoS Attacks

Denial of Service (DoS) Attacks are attempts to flood a server with false requests for
information, with the goal of overwhelming the system and ultimately crashing it. Not much can
be done to prevent a denial of service attack. However, you can minimize the impact of DoS
attacks by supplying the a couple of threshold values at installation time, and by customizing an
ISAPI filter after installation is complete.

Default Request Timeout

Since DoS attacks can degrade performance of the CIC Server, ISAPI Listener can be configured
(at installation time) to return a fault message (Server.RequestTimeout) if the CIC Server fails to
respond within a specific time interval.

Before installing SOAP Listener, decide what value to enter into the Default Request Timeout
field. This value sets the maximum amount of time in milliseconds that ISAPI Listener will wait
for the CIC Server to respond to a SOAP request. When this interval is exceeded, ISAPI Listener

http://www.microsoft.com/security
http://www.ntbugtraq.com/

sends a fault message to the requester. The default is 60,000 milliseconds (1 minute). If your IIS
server has a fast processor, and is dedicated to IIS, you may be able to reduce the default value.

This value sets the default timeout for all SOAPActions. Following installation, you can assign
timeout values to specific SOAPActions, by editing a configuration file. For details, see Step 2:
Set SOAPAction-Specific Timeout Values in the Post-Installation Procedures section of this
document.

Maximum SOAP Payload Size

SOAP ISAPI Listener uses a threshold setting named Maximum SOAP Payload Size to limit the
size of incoming SOAP messages. By default, the maximum SOAP payload Size is 128 KB. Larger
messages are not forwarded by the Listener to the CIC Server for processing. Based upon the
size of data passed to your handlers, you may be able to reduce this value significantly. This
helps minimize the impact of denial of service (DoS) attacks.

Maximum Pending Requests

The Maximum Pending Requests threshold limits the maximum number of SOAP requests that
the CIC server should process concurrently. It helps to think of this as the maximum number of
pending responses that SOAP Listener will wait for at any given time, since SOAP Listener waits
for a response to each request that it sends to CIC.

If Listener finds itself waiting for more responses that are allowed, it stops sending additional
inbound request messages to the CIC Server until the number of pending requests falls below
the threshold. SOAP ISAPI Listener does not queue unprocessed requests. It fails unprocessed
requests with a fault message (Server.TooBusy).

Process Isolation Level

There is one last setting that you must consider before installing SOAP ISAPI Listener, and that is
the level of process isolation (Low or High) that you wish to assign to the ISAPI Listener DLL.
Process isolation protects the main IIS process against application faults—in this case, against
potential failure of the ISAPI Listener DLL .

Process Isolation provides an additional layer of durability for your Web server. Low process
isolation provides the best performance. High process isolation offers more protection against
possible faults in the Listener application (unlikely). Low is the default.

Install SOAP Listener

If at this point, if you have IIS running with the latest service packs and hot fixes, behind an acceptable
firewall configuration, and have formulated threshold values, you are ready to install SOAP Listener. This
procedure explains how to run the SOAP Listener Setup to install, register, and configure the SOAP
Listener task on an IIS server. The Soap Listener task is an ISAPI DLL that translates HTTP requests into

notifications. It acts as a gatekeeper to prevent denial of service attacks. Complete this procedure at
your dedicated IIS Server or CIC Server running IIS. Installation requires pre-planning on your part to
address security and configuration issues. If you have not read the Installation and configuration pre-
planning section, we strongly recommend that you do so before performing this procedure.

1. Download the CIC 2018 R1 or later .iso file from the Genesys Product Information site at
https://my.inin.com/products/Pages/Downloads.aspx.

2. Copy the .iso file to a file server (non-CIC server) with a high bandwidth connection to the
server(s) on which you will be running the CIC 2018 R1 or later installs.

3. Mount the .iso file and share the contents to make them accessible to the server(s) on which
you will be running the CIC 2018 R1 or later installs.

4. Navigate to the \Installs\Off-ServerComponents directory on the file server.
5. Copy the SOAP Listener .msi file, for example, SOAPListener_2018_R1.msi, to the server on

which you plan to run this install and double-click to launch it.

The welcome page appears.

6. Press Next to proceed past the welcome screen. Then press Next a second time to accept
installation of default features.

7. Supply user name, domain password, and domain for a user account with administrative
privileges on the CIC server. Then press Next.

8. Type the name of the CIC server. Then press Next.
9. Supply values as indicated below:

Default Request Timeout (in seconds)

Enter the number of seconds that the ISAPI Listener should wait for the CIC Server to respond
(to a SOAP request) before timing out and returning a fault message. The default value is 0
seconds. Press Next to proceed.

Maximum Pending Requests

Specify the maximum number of SOAP requests that your CIC server should handle concurrently
during peak periods. This helps protect your server from denial of service (DoS) attacks. When
this value is exceeded, additional requests will be denied.

Maximum SOAP Payload Size (in KB)

Specify the maximum size (in kilobytes) of SOAP payloads sent by the SOAP Listener to the CIC
Server. Larger XML payloads will not be forwarded, to minimize the risk of denial of service
(DoS) attacks.

10. Press Next to proceed. The next screen prompts for a location where log files will be stored.
Accept the default path, or navigate to a different path. When you are finished, click Next.

11. Click Install to begin installing files.
12. Press Finish to exit Setup.
13. Click Yes to restart.

https://my.inin.com/products/Pages/Downloads.aspx

14. For the SOAP Listener machine to receive updates from the Interactive Update Provider on the
CIC Server, you must run the Interactive Update Client install following the SOAP Listener install.
The install will prompt for the Interactive Update Provider Server (CIC Server) name or IP
address.

Post-installation procedures

Following installation of ISAPI SOAP Listener, you should complete additional security steps to defend
against DoS Attack. Specifically, you should limit requests to known SOAPActions, and to assign timeout
values to individual SOAPActions. You will modify the default ISAPI filter configuration file. The relative
path to this file is ..\soaplistener\filter\I3SOAPISAPIConfig.xml. The SOAP ISAPI endpoint listener uses
I3SOAPISAPIConfig.xml to filter incoming message requests. This file acts as a gatekeeper. It affects
whether or not incoming messages are forwarded to the CIC Server by ISAPI Listener. Implementers are
strongly encouraged to edit I3SOAPISAPIConfig.xml immediately after SOAP ISAPI Listener is installed,
and whenever new handlers implement an additional SOAPAction.

The default configuration indiscriminately forwards all SOAP requests to the Interaction Center server
identified in the ISAPI Listener install. You should modify the filter file to make the following
modifications:

1. Add <Rule> elements that identify the specific operations (SOAPActions) that your CIC server
should process. Thereafter, SOAP ISAPI Listener will forward only those particular SOAPActions
to the CIC server.

2. Set timeout thresholds for specific SOAPActions used in your environment.

These modifications are particularly important if your SOAP Listener is exposed to the Internet. If you
leave the default filter unchanged, your CIC server is more venerable to DoS attacks. Before we discuss
the modification procedure steps in detail, it is necessary to introduce the format of the configuration
file.

I3SOAPISAPIConfig.xml Filter File Format

The ISAPI filter is just an XML file whose structure can be described as follows. Its root element,
<FilterConfig> has three child elements, <ICServers>, <Defaults> and <Rules>.

<ICServers>

The <ICServers> element contains a list of Interaction Center Servers to which to route the messages.
<ICServers> can have <ICServer> and <ICServer2> child elements.

<ICServer2> Uses a remote subsystem connection. GenSSLCerts must be run prior to attempting to
connect to a notifier with this type of connection. In a switchover situation, use <ICServer>. <ICServer2>
will not work correctly in switchover environments.

The attributes of the <ICServer> child element are:

name

The name of the CIC server, used to identify the server in filter rules.

host

Hostname or IP address of the Notifier (CIC) server.

username

Login name for the Notifier connection.

password

Password for the Notifier session.

The attributes of the <ICServer2> child element are:

name

Name of the server (used to identify it in rule action).

host

Hostname or IP address of the Notifier server.

<Defaults>

The <Defaults> element stipulates default rule actions. It has two child elements. <ForwardRequest>
identifies requests that will be forwarded. <HTTPResponse> identifies requests to be rejected.

The attributes of the <ForwardRequest> child element are:

server

Name of the Interaction Center Server configured through the corresponding <ICServer> tag.
This attribute is (case-sensitively) matched against the name attributes of the <ICServer> tags.

initiatorEvent

Name of the InitiatorEvent (notification event) as which the request should be forwarded to the
Interaction Center server. If not explicitly specified or an empty string, the soapAction from the
HTTP header will be used.

soapAction

SOAPAction string to be forwarded to IP. If not defined or "*", use same action that matched the
rule.

clientName

Client name value specified in the request notification. Default = "I3SOAPISAPI". This is mainly
informational for use as a trace message.

requestTimeout

Timeout value used for the request. Default as specified by ‘DefaultRequestTimeout' registry
key. Time in milliseconds

includeTransportInfo

Specifies whether to include the TransportInfo data in the request sent to IP. Possible values:
"1", "0", "true", "false". Default = "1".

The attributes of the <HTTPResponse> child element are:

statusCode

HTTP status code. Default = "500".

statusText

HTTP status text. Default = lookup based on statusCode (for "500": "Internal Server Error").

soapFaultcode

Value of the <faultcode> element in the <Fault> element of the response sent back to the client.
Default = "Server.SOAPAction".

soapFaultstring

Value of the <faultstring> element in the <Fault> element of the response sent back to the
client.. Default = "The SOAPAction is not recognized by the server!"

<Rules>

The <Rules> element contain <Rule> child elements which define the action to be performed when the
rule fires. That happens when the request's SOAPAction matches the rule's soapAction attribute. The
<Rule>child element has only one attribute:

soapAction

SOAPAction that triggers this rule. SOAPAction matching is case-sensitive.

Sample I3SOAPISAPIConfig File

This sample filter listed below shows how the elements fit together. The numbers are for illustration
purposes and do not appear in an actual configuration file. See SOAP ISAPI Filter Schema for the schema
used by I3SOAPISAPIConfig.xml.

 1 <FilterConfig xmlns="urn:schemas-inin-com:soapisapi-filter-config">

 2 <ICServers>

 3 <ICServer name="localhost"

 4 host="localhost"

 5 userName=""

 6 password=""/>

 7 <ICServer name="mars"

 8 host="mars"

 9 userName="eic_admin"

 10 password="i3"/>

 11 </ICServers>

 12 <Defaults>

 13 <ForwardRequest server="localhost"

 14 clientName="I3SOAPISAPI"

 15 requestTimeout="20000"

 16 includeTransportInfo="1"/>

 17 <HTTPResponse statusCode="500"

 18 statusText="Internal Server Error"

 19 soapFaultcode="Client.SOAPAction"

 20 soapFaultstring="The specified method is not supported!"/>

 21 </Defaults>

 22 <Rules>

 23 <Rule soapAction="uri:my-calculator#Add">

 24 <ForwardRequest initatorEvent="uri:my-calculator"/>

 25 </Rule>

 26 <Rule soapAction="uri:my-calculator#Subtract">

 27 <ForwardRequest initatorEvent="uri:my-calculator"/>

 28 </Rule>

 29 <Rule soapAction="uri:my-calculator#Multiply">

 30 <ForwardRequest initatorEvent="uri:my-calculator"/>

 31 </Rule>

 32 <Rule soapAction="uri:my-calculator#Divide">

 33 <ForwardRequest initatorEvent="uri:my-calculator"/>

 34 </Rule>

 35 <Rule soapAction="uri:test#foo">

 36 <ForwardRequest server="mars"

 37 soapAction="uri:test#bar"

 38 requestTimeout="120000"/>

 39 </Rule>

 40 <Rule>

 41 <HTTPResponse/>

 42 </Rule>

 43 </Rules>

 44 </FilterConfig>

This sample specifies several SOAPActions that refer to a calculator service. On line 23, the SOAPActions
of the calculator are forwarded with the "uri:my-calculator" InitiatorEvent, so all requests trigger the
same initiator. All other attributes of that rule are inherited from the default <ForwardRequest>
element (line 13). Accordingly, requests for my-calculator are sent to the "localhost" server, even
though that was not explicitly defined in the rule. It is easy to specify attributes in a Rule element that
override default elements. In line 35, the SOAPAction "uri:test#foo" is forwarded as "uri:test#bar" (both
the SOAPAction and InitiatorEvent) to the server "mars". The request timeout for this particular request
is set to 2 minutes (120,000 milliseconds).

The last rule simply rejects all other SOAPActions with the default <HTTPResponse> rule action. To
forward all SOAPActions indiscriminately, the following rule could be used:

<Rule>

 <ForwardRequest/>

</Rule>

Wildcard Pattern Matching
Currently, we do not support regular expression patterns as the soapAction attribute of a
rule, although that may be added in a future release. However, to simplify filters for
objects with many methods, a simple wildcard pattern is supported: The soapAction value
may end with an asterisk (*), which means that the SOAPAction many be followed by one
or more characters, that are ignored in the match. The * wildcard is supported only if it is
the last character in a soapAction attribute. For example, this technique could be used to
replace all rules for the calculator with a single one, where soapAction attribute has a
value of " uri:my-calculator#*". Implement wildcards with care, or not at all, since this
opens the possibility for DoS attacks on the Notifier event-ID caches. We thus strongly
suggest explicitly adding rules for each SOAPAction that is to be forwarded to the server.

Forward only supported SOAPActions to CIC

1. Customize the ISAPI filter file to prevent the SOAP Listener task from indiscriminately forwarding
all SOAP requests to the Interaction Center Server. Filtering ensures that the CIC Server receives
only those requests that match supported SOAPActions.

2. Set SOAPAction Timeout Values. You can optionally modify this file to assign SOAPAction-
specific timeout values, by adding requestTimeout attributes to ForwardRequest elements. The
example below shows how to set the timeout value for a SOAPAction named "bar" to 120
seconds.

<ForwardRequest server="mars" …identifies the CIC server

soapAction="uri:test#bar" …identifies which SOAPAction

requestTimeout="120000"/> …action-specific timeout value in milliseconds

3. Unload the SOAP ISAPI DLL. To put a modified filter configuration into effect, you must unload
the ISAPI DLL. The DLL will reload automatically the next time that a SOAP request is received.

1. From the desktop of your IIS server, press the Start button. Select Settings, then Control
Panel.

2. Double-click the Administrative Tools folder to open it.
3. Double-click the icon titled Internet Services Manager.
4. Right-click the name of your virtual directory. Then select Properties.
5. Select the Virtual Directory tab. Then press the Unload button.
6. Press OK to close the active dialog.
7. Close the Internet Services Manager window. Changes made to the SOAP filter

configuration will take effect the next time that a request is received.

SOAP ISAPI Filter Schema

The ISAPI Filter Configuration file conforms to the following schema:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="urn:schemas-inin-com:soapisapi-filter-config"

 targetNamespace="urn:schemas-inin-com:soapisapi-filter-config"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:element name="FilterConfig" type="tns:FilterConfig"/>

 <xsd:complexType name="FilterConfig">

 <xsd:sequence>

 <xsd:element name="ICServers" type="tns:ICServers" minOccurs="0"/>

 <xsd:element name="Defaults" type="tns:Defaults" minOccurs="0"/>

 <xsd:element name="Rules" type="tns:Rules" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ICServers">

 <xsd:element name="ICServer" type="tns:ICServer" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="ICServer">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="host" type="xsd:string" use="required"/>

 <xsd:attribute name="userName" type="xsd:int" use="optional"/>

 <xsd:attribute name="password" type="xsd:boolean" use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="Defaults">

 <xsd:sequence>

 <xsd:element name="ForwardRequest" type="tns:ForwardRequest"
minOccurs="0"/>

 <xsd:element name="HTTPResponse" type="tns:HTTPResponse"
minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Rules">

 <xsd:element name="Rule" type="tns:Rule" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="Rule">

 <xsd:choice minOccurs="0">

 <xsd:element name="ForwardRequest" type="tns:ForwardRequest"/>

 <xsd:element name="HTTPResponse" type="tns:HTTPResponse"/>

 </xsd:choice>

 <xsd:attribute name="soapAction" type="xsd:string" use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="ForwardRequest">

 <xsd:attribute name="server" type="xsd:string" use="optional"/>

 <xsd:attribute name="initatorEvent" type="xsd:string" use="optional"/>

 <xsd:attribute name="soapAction" type="xsd:string" use="optional"/>

 <xsd:attribute name="clientName" type="xsd:string" use="optional"/>

 <xsd:attribute name="requestTimeout" type="xsd:int" use="optional"/>

 <xsd:attribute name="includeTransportInfo" type="xsd:boolean"
use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="HTTPResponse">

 <xsd:attribute name="statusCode" type="xsd:positiveInteger"
use="optional"/>

 <xsd:attribute name="statusText" type="xsd:string" use="optional"/>

 <xsd:attribute name="soapFaultcode" type="xsd:QName" use="optional"/>

 <xsd:attribute name="soapFaultstring" type="xsd:string" use="optional"/>

 </xsd:complexType></xsd:schema>

Reinstall/Uninstall SOAP Listener

If you run the SOAP Listener Install a second time, it provides the opportunity to change the way
features are installed, repair installation errors, or remove SOAP Listener from your computer.

1. Insert your CIC installation DVD (or mount an ISO image). In many cases, the user interface
application will start automatically. If it does not appear, run autorun.exe from the root
directory.

2. Click the Optional Installs (2) button.
3. Click CIC SOAP Listener.
4. Click Next to dismiss the Welcome screen.
5. Click Change, Repair, or Remove.

Install SOAP Notifier COM

Install SOAP Notifier COM

SOAP Notifier COM objects issue SOAP notifications from automation compatible applications. SOAP
Notifier COM components provide a high-performance method of initiating handlers without incurring
the performance penalty of HTTP-based Listener operations.

Third-party applications created using the SOAP Notifier COM API directly create and forward packets to
Interaction Processor, bypassing the need to create packets received using HTTP and the Soap Listener
task.

What: Run CC SOAP Notifier COM Components Setup to install and register components needed to run
or develop third-party SOAPNotifierCOM applications on a desktop PC. Components are installed to the
destination folder specified by the user. The default folder is c:\Program Files\Interactive Intelligence.
Setup registers two dynamic link libraries: SOAPNotifierCOMU.DLL and MSSOAPNotifierConnectorU.DLL.
Setup optionally installs a help system that describes interfaces, methods, and properties in the Notifier

COM API. When this option is selected, setup adds a shortcut named SOAP Notifier COM Help to the
start menu, inside the Interactive Intelligence folder.

Where: Install these components on any PC used to develop or run SOAP Notifier applications.

Prerequisite: The desktop PC must be running a version of Windows that supports the Component
Object Model. SOAP Notifier COM API is not compatible with operating systems that do not support
COM (Linux, for example).

Steps to Complete

1. Download the CIC 2018 R1 or later .iso file from the Genesys Product Information site at
https://my.inin.com/products/Pages/Downloads.aspx.

2. Copy the .iso file to a file server (non-CIC server) with a high bandwidth connection to the
server(s) on which you will be running the CIC 2018 R1 or later installs.

3. Mount the .iso file and share the contents to make them accessible to the server(s) on which
you will be running the CIC 2018 R1 or later installs.

4. Navigate to the \Installs\Off-ServerComponents directory on the file server.
5. Copy the SOAP Notifier COM .msi file, for example, SOAPCOM_2018_R1.msi, to the server on

which you plan to run this install and double-click to launch it.
6. If prompted whether to run the install program, respond Run.
7. Press Next to dismiss the welcome screen.
8. Press Next to accept all default features.
9. Press Install to begin installation.
10. Wait while files are copied.
11. Press Finish to exit Setup.

Reinstall/Uninstall SOAP Notifier COM Components

If you run SOAP Notifier COM Components Setup a second time, it provides the opportunity to modify
the way features in installed, to repair installation errors, or to remove SOAP Notifier COM components
from your computer.

1. Click Next to proceed past the startup screen.
2. Then select Change, Repair, or Remove.

Appendix A: SOAP Transport Information and Control

Appendix A: SOAP Transport Information and Control

The transport info structure must have a TransportInfo root element that is in no namespace. It must
have a name attribute that contains the name of the transport. The transport name is useful for
debugging, tracing, or to perform transport specific operations. However, this Transport Information is
not defined by the SOAP specification. The TransportInfo element may have any number of child
elements. The following is the schema for the Transport Info structure. For efficiency, a client may
chose not to include transport information, but still send the transport name. In this case, the
TransportInfo element will be empty.

https://my.inin.com/products/Pages/Downloads.aspx

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="TransportInfo" type="TransportInfoType"/>

 <xsd:complexType name="TransportInfoType">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <any minOccurs="0" maxOccurs="unbounded"/>

 <anyAttribute/>

 </xsd:complexType>

</xsd:schema>The Transport Control structure must have a TransportCtrl root
element that is in no namespace. It may contain any number of attributes or
child elements:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="TransportCtrl" type="TransportCtrl"/>

 <xsd:complexType name="TransportCtrl">

 <any minOccurs="0" maxOccurs="unbounded"/>

 <anyAttribute/>

 </xsd:complexType>

HTTP Transport

HTTP Transport

Request (Transport Info)

The following schema describes the transport information for the HTTP transport. The HTTP element is
the child element of the TransportInfo element generated by the ISAPI Listener.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="HTTP" type="HTTP"/>

 <xsd:complexType name="HTTP">

 <xsd:sequence>

 <xsd:element name="Headers" type="Headers" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="method" type="xsd:string" use="required"/>

 <xsd:attribute name="url" type="xsd:string" use="required"/>

 <xsd:attribute name="pathInfo" type="xsd:string" use="required"/>

 <xsd:attribute name="queryString" type="xsd:string" use="required"/>

 <xsd:attribute name="remoteAddr" type="xsd:string" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="Headers">

 <xsd:element name="Header" type="Header" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="Header">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

Request (Transport Info)

HTTP Element Attributes

The attributes of the HTTP entry have the following meaning:

method

The HTTP method with which the request was made. In our case usually POST. This is equivalent
to the value of the CGI variable REQUEST_METHOD.

url

Designates the base portion of the URL. Parameter values are not included (see pathInfo and
queryString).

pathInfo

Contains the additional path information given by the client. This consists of the trailing part of
the URL after the ISAPI DLL name, but before the query string, if any. Corresponds to the CGI
variable PATH_INFO.

queryString

Contains the information that follows the first question mark in the URL Corresponds to the CGI
variable QUERY_STRING.

remoteAddr

Contains the IP address of the client or agent of the client (for example gateway, proxy, or
firewall) that sent the request. Corresponds to the CGI variable REMOTE_ADDR.

Request Transport Example

This sample Transport Info structure adheres to schemas:

<TransportInfo name="HTTP">

 <HTTP method="POST" url="/soapendpoint/I3SOAPISAPIAD.DLL" pathInfo=""

 queryString="" remoteAddr="127.0.0.1">

 <Headers>

 <Header name="Host">localhost</Header>

 <Header name="Content-Type">text/xml</Header>

 <Header name="Content-Length">1234</Header>

 <Header name="SOAPAction">"uri:my-soap-request#MyMethod"</Header>

 </Headers>

 </HTTP>

</TransportInfo>

Response (Transport Control)

Response (Transport Control)

The following schema describes the transport control data for the HTTP transport. The HTTP element is
the child element of the TransportCtrl element.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="HTTP" type="HTTP"/>

 <xsd:complexType name="HTTP">

 <xsd:sequence>

 <xsd:element name="Headers" type="Headers" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="statusCode" type="xsd:positiveInteger"
use="optional"/>

 <xsd:attribute name="statusText" type="xsd:string" use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="Headers">

 <xsd:element name="Header" type="Header" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="Header">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

Response Transport Example

The following is an example of a transport control response structure that "asks" the ISAPI listener to
send a 501 error (Not Implemented) back to the client. The default status codes are 200 (OK) for
successfully processed requests, and 500 (Internal Server Error) for failed requests (body contains a
<Fault> element).

<TransportCtrl>

 <HTTP statusCode="501" statusText="Not Implemented"/>

</TransportCtrl>

Tip—Header fields specified in the TransportControl structure will have precedence over
the default headers generated by the ISAPI listener (such as "Content-Type:text/xml").

Appendix B: SOAP Tools

Appendix B: SOAP Tools

This appendix provides information about the tools in Interaction Designer that process SOAP requests
and responses. SOAP tools are late-bound, meaning that the structure of data processed by a SOAP
handler does not have to be specified at compile time when the handler is published. SOAP tool steps
can be added to any handler, to create and send SOAP requests to any server that understands SOAP.
SOAP Tools do not support calls to an SSL server. In CIC 2.3 and later, the assumed namespace prefix is
SOAP, rather than SOAP-ENV, for compatibility with Microsoft .NET. These tools are also documented in
the Interaction Designer help.

There are 5 categories of SOAP tools:

• Initiator Tools
• Request Tools
• Payload Processing Tools
• Invocation Tools
• Helper Tools

Initiator Tools

Initiator Tools

SOAP Initiator

This initiator triggers if the ‘Notification Event' of the request matches a specified string. The Notification
Event on which the Initiator triggers is specified in the property dialog.

Parameter Dir Type Remarks
SOAP
Request OUT Handle Handle representing the SOAP request. It can subsequently be

used to query additional information from the (HTTP) header.
Initiator
Event OUT String String of the notification event that triggered the initiator.

SOAP
Action OUT String SOAP Action of the request that triggered the handler.

Request Tools

Request Tools

SOAP Get Request Info

Queries some information from the request handle. Exit Paths: Success, Failure.

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request.
Initiator Event OUT String Notification event that caused the initiator to trigger.
SOAP Action OUT String SOAP action code of that request.
Client ID OUT Integer Client ID (Notifier object id).
Client Name OUT String Name of the client.
Request ID OUT Integer Request ID (for debugging/tracing purposes).
Payload Size OUT Integer Size of the request payload in bytes.
Transport Info Size OUT Integer Size of the transport information in bytes.

SOAP Abort Request

Aborts the request. If ‘Send Unhandled Response' is False, it does not send a response notification, not
even an "Unhandled" response when the Request handle goes out of scope. Aborting a request is useful
if a SOAP request handler is registered as Monitor handler, for example for wildcard SOAPAction.
Multiple handlers may fire at the same time, but only one must send a response notification to the
client.

Exit Paths: Success, Failure

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request
Send Unhandled Response IN Boolean Checkbox (default = False)

SOAP Get Transport Info

Returns an XML document containing transport specific (header) data. It allows the client to include any
kind of out-of-band data in the request. For example, for HTTP requests, this document contains the
HTTP method and a list of the header elements.

Tip—The data may be parsed every time the tool is invoked or cached. This may depend
on the specified selection namespaces. The returned document is read-only.

See SOAP ISAPI Filter Schema for schema details. If there is no transport information data, an empty
document is returned and the tool takes the ‘No Info' exit. If there is an error (Failure), an empty
document is returned which can be queried with ‘XML Get Error Info'.

Exit Paths: Success, No Info, and Failure

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request
Selection
Namespaces IN String Optional. Space delimited list of namespace declarations to

be set as selection namespaces for the XPath queries.

Preserve
Whitespace IN Boolean

Checkbox:

False Default. Nonessential white space is ignored when
parsing the payload.

True Preserve nonessential white space.

Validate On
Parse IN Boolean

Checkbox:

False Default. Only verifies for well-formedness.

True Validates against the schema during parse.

Resolve
Externals IN Boolean

Checkbox:

False Default. Do not resolve resolvable namespaces.

True Resolve resolvable externals (namespaces, DTDs, entity
references etc.) at parse time.

Transport Info OUT Node

Read-only. XML document containing transport-specific out-
of-band information. Empty document if no transport
information. See Appendix A: SOAP Transport Information
and Control.

SOAP Expects Response

Takes a different exit path depending on whether the SOAP request requires a response (YES) or not
(NO). If the request expects a response and the handler exits (the SOAP Request handle goes out of
scope) without having invoked ‘SOAP Send Response', a Response Notification is sent back with the
‘Unhandled' flag set to true.

Exit Paths: YES, NO

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request

SOAP Parse Request Payload

Parses the payload of the request into an XML document. If the ‘Validate SOAPAction' parameter is
True, the tool checks the SOAPAction field of the request against the payload. The payload data is
parsed every time this tool is invoked (i.e. it is not cached). The document is furthermore not read-only
and thus may be modified as needed, for example to create the response. The payload envelope node
will still be returned, even if the SOAP Action does not match.

Heuristic

This tool uses a heuristic to match the action code (legend: <NS> = namespace of the first body element;
<MethodName> = Name of the element [method name]):

<NS>

<NS> [<AnyCharacter>] <MethodName>

<MethodName>

[<AnyCharacter>] <MethodName>

This will catch actions such as "uri:my-uri#MyMethod", "http://soap.inin.com/e-faq", "MyMethod" etc.
An empty SOAPAction matches all methods.

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request

Validate
SOAPAction IN Boolean

Checkbox:

False Don't verify SOAPAction header field against payload.

True Default. Check SOAPAction header field against method
namespace and name.

Action
Validation
Mask

IN String Optional. Mask for validation of SOAP Action.
Note: this is a future extension that has not been defined.

Selection
Namespaces IN String

Optional. Space delimited list of namespace declarations to
be set as selection namespaces the XPath queries. If this
argument not specified, just "SOAP-ENV" is mapped to the
envelope namespace.
NOTE:

The "SOAP-ENV" prefix will be used irrespective of the actual
prefix in the payload.

A declaration mapping "SOAP-ENV" to the envelope
namespace will always be added to the declarations, unless
SOAP-ENV is already declared in the argument.

Preserve
Whitespace IN Boolean

Checkbox:

False Default. Nonessential whitespace is ignored when
parsing the payload.

True Preserve nonessential white space

Validate On
Parse IN Boolean

Checkbox:

False Default. Only verifies for well-formedness.

True Validates against the schema during parse.

Resolve
Externals IN Boolean

Checkbox:

False Default. Do not resolve resolvable namespaces.

True Resolve resolvable externals (namespaces, DTDs, entity
references etc.) at parse time.

Payload OUT Node

XML document with Envelope as document element. If there
is an error, the document may be empty (but not NULL), and
the ‘XML Get Error Info' tool can be used to retrieve
information about what failed).

Exit Paths

Success

Payload successfully parsed. SOAP Action matches.

Empty Payload

SOAP Payload is empty (XML document has no document element).

Wrong Action

SOAP Action validation enabled and action doesn't match.

Parse Error

A parse error occurred parsing the payload. Use ‘XML Get Error Info'.

Failure

Some other failure. Use ‘XML Get Error Info'.

SOAP Send Response

Sends the specified payload as response to the sender of the request. To support transport specific
features, the ‘Transport Control Data' argument takes an XML node whose content will be sent back to
the client. It can be used to send transport specific out-of-band data to the client. For example, for the
HTTP transport it allows to set additional header fields or specify a special status code. See SOAP ISAPI
Filter Schema for schema details. The schema itself is not part of SOAP specification.

Parameter Dir Type Remarks
SOAP Request IN Handle Handle of the SOAP request

Payload IN Node Node of the payload envelope to send back to the client. Must
be document node or <Envelope> document element.

Transport
Control Data IN Node

Optional. Node of an XML structure with additional transport
specific control data. See Appendix A: SOAP Transport
Information and Control.

Exit Paths

Success

Response was sent successfully.

No Response

This request does not expect a response.

Duplicate

Response for this request has already been sent.

Failure

Some other error. Check Payload node with XML Get Error Info.

Payload Processing Tools

Payload Processing Tools

SOAP Create Envelope

Creates a new SOAP envelope. To simplify composing RPC requests, where the first child element of the
<Body> element is the method to invoke, the ‘RPC Method Name' and ‘RPC Method Namespace'
argument can be used as shortcut. The same can be achieved by invoking ‘SOAP Add Body Element'
after creating the envelope. Therefore, this tool creates the following XML document:

<?xml version="1.0" encoding="{XML Encoding}" ?></{RPC Method Name}>]

 </{Envelope Prefix}:Body>

</{Envelope Prefix}:Envelope>

The ‘Declare Namespaces' argument is used to declare namespaces in the envelope that will be used in
other elements, such as the xsd or xsi prefixes for typed arguments. It keeps the size of the envelope
low, as otherwise each element that uses a prefix will contain xmlns attributes. If the ‘RPC Method
Name' argument has no namespace prefix and an ‘RPC Method Namespace' different than "" (default
namespace) is specified, a prefix will be synthesized, unless the local name starts with a ‘:' (which is
illegal in XML, but signals to this tool not to add a synthesized namespace prefix). Adding a prefix can
greatly reduce the size of the message if child elements are in no namespace (usually parameters are in
the default namespace), as otherwise each child element would get a xmlns="" attribute.

Exit Paths: Success, Failure

Parameter Dir. Type Remarks
XML
Encoding IN String Optional. Character encoding to be used for the XML document.

If omitted, "UTF-8" is used. See remarks.
Envelope
Prefix IN String Optional. Namespace prefix for the envelope namespace. If not

specified the default "SOAP-ENV" is used.
Encoding
Style IN String Optional. Space separated list of namespaces specifying the

encoding style (value of the ‘encodingStyle' attribute). If not

specified or "STANDARD" is passed as string,
"http://schemas.xmlsoap.org/soap/encoding/" is used.

The encodingStyle attribute is omitted if "NONE" is specified.

RPC Method
Name IN String

Optional. Fully qualified name of the method element (first child
element of the body element).

If not specified, no method element will be added.

Please consult Remarks for additional details!
RPC Method
Namespace IN String Optional. Namespace of the method element.

Declare
Namespaces IN String

Space delimited list of namespace declarations of the form
xmlns:{prefix}=‘{URI}' to be declared in the envelope. See
remarks.

Selection
Namespaces IN String

Optional. Space delimited list of namespace declarations to be
set as selection namespaces for the XPath queries. If argument
not specified, the envelope prefix and the ‘Declare Namespace'
namespaces will be set as selection namespaces.

NOTE: mapping for envelope prefix will always be added.
Envelope OUT Node XML document with Envelope as document element.

SOAP Get Body

Retrieves the Body element from the SOAP envelope. A body must exist and if it can't be found, the tool
exits through ‘Failure' and attaches error information to the envelope.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node whose
document element is <SOAP-ENV:Envelope> or the node is the
element itself.

Body OUT Node Node of the <SOAP-ENV:Body> element.

SOAP Get Body Element

Retrieves the first body element that matches the given base name and namespace. If no namespace is
specified, the first element matching ‘Base Name' is returned. Returns the first element in the body if
neither a name nor namespace is given.

Exit Paths: Success, Not Found, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Base Name IN String

Optional. Base name of the element to return. If no name
given, the first entry in the body in ‘Namespace' is returned.
This corresponds to the element of the method for RPC
requests.

Namespace IN String Optional. Namespace of the element to return

Retrieve
Value IN Boolean

Checkbox:

False Default. Do not retrieve value

True Return node value

Body Element OUT Node
Child element of the <SOAP-ENV:Body> element that has the
given base name and namespace. NULL node if the element is
not in the body.

Element Base
Name OUT String Base name of the returned element

Element
Namespace OUT String Namespace URI of the returned element

Value OUT String Value of the body element (if ‘Retrieve Value' = True)

SOAP Add Body Element

Adds an entry to the body of the SOAP envelope. Use the XML tools on the returned ‘Element' node to
add rich contents to the element (not just a string).

Tip—If the ‘Name' argument has no namespace prefix and a ‘Namespace' different than ""
(default namespace) is specified, a prefix will be synthesized, unless the local name starts
with a ‘:' (which is illegal in XML, and thus signals to this tool not to add a synthesized
namespace prefix). Adding a prefix can greatly reduce the size of the message if child
elements are in no namespace, as otherwise each child element would get an xmlns=""
attribute.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the node
is the element itself.

Name IN String Fully qualified name of the element to create and add to the
body.

Namespace IN String

Optional. Namespace URI of the element. If the parameter is
omitted and the name has a namespace prefix, the tool will
search in the parent elements for the namespace with the same
prefix and make the element a member of this namespace.

Encoding
Style IN String

Optional. Value of the ‘encodingStyle' attribute. Attribute is
omitted if not specified or "NONE". Specify "STANDARD" for
standard namespace
("http://schemas.xmlsoap.org/soap/encoding/").

Value IN String Optional. String value to set as content of the element.

Replace
Existing Body
Element

IN Boolean

Checkbox:

False Default. Add the element as last child of the body.

True Replace first element in the body that has the same (local)
name and namespace. If body contains multiple elements with
the same name and namespace, the remaining ones are not
modified.

Delete All
Existing Body
Elements

IN Boolean

Checkbox:

False Default. Append to the child list of the body.

True Remove all existing elements from the body prior to
adding the new element.

Body
Element OUT Node Node of the element that has just been added.

SOAP Query Encoding Style

Matches a space separated list of URIs against the ‘encodingStyle' attribute of the element. If the
element doesn't have an ‘encodingStyle' attribute, the parent of the element is checked until an
element with an ‘encodingStyle' attribute is found. If that attribute contains any of the specified
encoding style URIs, the tool returns through ‘Found' and returns the style that was found.

Tip: If the first ‘encodingStyle' attribute found along the parent chain does not contain any
of the specified styles, the search does not continue and the tool exits ‘Not Found'.

Exit Paths: Found, Not Found, Failure

Parameter Dir Type Remarks

Element IN Node (child) Element of the SOAP envelope to query. If document
node, the document element is queried.

Encoding
Styles IN String Space separated list of URIs to match against the ‘encodingStyle'

attributes.
First Style
Found OUT String Encoding style namespace that was found

Element Of
Style OUT Node XML node of the element in which the encoding style attribute

was found.

SOAP Get Header

Retrieves the header element from the SOAP envelope if it has one.

Exit Paths: Success, No Header, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node whose
document element is <SOAP-ENV:Envelope> or the node is the
element itself.

Header OUT Node Node of the <SOAP-ENV:Header> element. NULL node if the
envelope contains no header.

SOAP Get Header Element

Retrieves the first header element that matches the given base name and namespace. Returns the first
element in the header if neither a name nor namespace is given. Takes ‘Not Found' exit if the envelope
doesn't have a header or the element can't be found.

Exit Paths: Success, Not Found, No Header, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Base Name IN String Optional. Base Name of the element to return
Namespace IN String Optional. Namespace of the entry to return

Retrieve
Value IN Boolean

Checkbox:

False Do not retrieve value

True Default. Return node value

Header
Element OUT Node

Child element of the <SOAP-ENV:Header> element that has
the given base name and namespace. NULL node if the
envelope contains no header or the element is not in the

header.
Element Base
Name OUT String Base name of the returned element

Element
Namespace OUT String Namespace URI of the returned element

Value OUT String Value of the element (if ‘Retrieve Value' = True)

SOAP Get Header Elements

Returns iterator to a list of header elements filtered by the given arguments. Takes the ‘None' exit if
envelope has no header or none of the header elements matched the filter criteria.

Exit Paths: Success, None, No Header, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Base Name IN String Optional. Only include elements with this base name.
Namespace IN String Optional. Only include elements in this namespace.

Must
Understand IN Boolean

Optional:

False Return header entries whose ‘mustUnderstand' attribute
is "0" (or no attribute is specified)

True Return header entries whose ‘mustUnderstand' attribute
is "1".

Default: Don't filter on ‘mustUnderstand'

Actor URIs IN String
Optional. Space separated list of actor URIs. Only elements
whose actor attribute has one of these namespaces is
returned. If not specified, don't filter on actor namespace.

Header
Elements OUT NodeIter Iterator to collection of header entries. Use the ‘XML Get Next

Node' tool to iterate over collection.
Count OUT Integer Number of items in the Header Entries collection

SOAP Add Header Element

Creates a header element and adds it to the given envelope. If the envelope doesn't yet have a header,
one will be inserted before the Body element.

If the ‘Name' argument has no namespace prefix and a ‘Namespace' different than "" (default
namespace) is specified, a prefix will be synthesized, unless the local name starts with a ‘:' (which is

illegal in XML, and thus signals to this tool not to add a synthesized namespace prefix). Adding a prefix
can greatly reduce the size of the message if child elements are in no namespace, as otherwise each
child element would get an xmlns="" attribute.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Name IN String Fully qualified name of the header element to create and add
to the header.

Namespace IN String

Optional. Namespace URI of the element. If the parameter is
omitted and the name has a namespace prefix, the tool will
search in the parent elements for the namespace with the
same prefix and make the element a member of this
namespace.

Must
Understand IN Boolean

Optional. Specifies the value of the ‘mustUnderstand' attribute:

False mustUnderstand="0"

True mustUnderstand="1"

Not specified: No ‘mustUnderstand' attribute is added.
Actor URI IN String Optional. Value of the ‘actor' attribute.

Encoding
Style IN String

Optional. Value of the ‘encodingStyle' attribute. Attribute is
omitted if not specified or "NONE". Specify "STANDARD" for
standard namespace
("http://schemas.xmlsoap.org/soap/encoding/").

Value IN String Optional. String value to set as content of the element.

Replace
Existing
Header
Element

IN Boolean

Checkbox:

False Default. Add the element as last child of the body.

True Replace first element in the body that has the same (local)
name and namespace. If body contains multiple elements with
the same name and namespace, the remaining ones are not
modified.

Delete All
Existing
Header
Elements

IN Boolean

Checkbox:

False Default. Append to the child list of the body.

True Remove all existing elements from the body prior to
adding the new element.

Header OUT Node Node of the element that just has been inserted.

Element

SOAP Get Fault

Retrieves fault information from the SOAP envelope. If there is no <Fault> element in the envelope, the
‘No Fault' exit is taken and NULL elements and empty strings are returned. If the envelope is read-only,
the returned elements will be read-only too.

Exit Paths: Success, No Fault, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the node is
the element itself.

Fault
Element OUT Node Node of the <Fault> element.

Fault Code OUT String Value of the <faultcode> element. It provides programmatic
information about the fault.

Fault String OUT String Value of the <fautstring> element. It provides human readable
information about the fault.

Fault Actor OUT String Value of the <faultactor> element. It provides the URI of the
source of the fault.

Detail
Element OUT Node

Node of the <detail> element. It is used to transfer application
specific fault information. NULL Node if there is no <detail>
element.

SOAP Set Fault

Adds a <Fault> element to the envelope or replaces an existing one. If one of the mandatory fields (Fault
Code, Fault Actor) is empty, the Failure path is taken and XML Get Error Info may be used on the
Envelope node to query for error reasons. If the envelope already has a <Fault> element, the tool will
remove the existing <Fault> element and replace it with the new element.

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document
node whose document element is <SOAP-ENV:Envelope> or
the node is the element itself.

Fault Code IN String String to set as value of the <faultcode> element. String must
not be empty.

Fault String IN String String to set as value of the <fautstring> element. Should be

set to provide human readable information.

Fault Actor IN String Optional. String to set as value of the <faultactor> element. If
argument is not specified, no <faultactor> element is added.

Create Detail
Element IN Boolean

Checkbox:

False Don't create a <detail> element

True Default. Create an empty <detail> element

NOTE: According to the SOAP spec, a <detail> element must
be present if the fault is because the <Body> could not be
processed successfully.

Preserve Body
Elements IN Boolean

Checkbox:

False Default. Remove all existing body elements and replace
with <Fault> element

True Leave existing body elements and append <Fault>
element as last child of <Body>

NOTE: When sending a fault response to the client, only the
<Fault> element is allowed in the body!

Detail Element OUT Node Returns the node of the newly created <detail> element. If
‘Create Detail Element' is False, a NULL node is returned.

Exit Paths: Success, Failure

SOAP Create Fault Response

Copies the request envelope and replaces all children of the <Body> element with a single <Fault>
element. It thus combines the ‘SOAP Create Envelope' and ‘SOAP Set Fault' tools. The selection
namespaces from the source envelope document are copied to the response envelope document as
well.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the request SOAP payload. Can be a
document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Fault Code IN String String to set as value of the <faultcode> element. String must
not be empty.

Fault String IN String String to set as value of the <fautstring> element. Should be
set to provide human readable information.

Fault Actor IN String Optional. String to set as value of the <faultactor> element. If

argument is not specified, no <faultactor> element is added.

Create Detail
Element IN Boolean

Checkbox:

False Don't create a <detail> element

True Default. Create an empty <detail> element

NOTE: According to the SOAP spec, a <detail> element must
be present if the fault is because the <Body> could not be
processed successfully.

Copy Header IN Boolean

Checkbox:

False Does not copy the <Header> element from the source
envelope.

True Copies the <Header> element and its content from the
source envelope.

Response
Envelope OUT Node Document node of the response envelope

Detail
Element OUT Node Node of the <detail> element of the <Fault> element. If

‘Create Detail Element' is False, a NULL node is returned.

SOAP Get RPC Parameter

This is a convenience tool for examining RPC requests. It retrieves a parameter element (child) from the
first element in the <Body> element (method in an RPC request). It returns the first element that
matches all of the specified arguments. If ‘Base Name', ‘Namespace', and ‘Index' are undefined, the first
element will be returned.

For example, to retrieve the 2nd parameter from the ‘Add' method in the calculator example presented
in Listing 4, you would specify "Parameter2" as name and "" as namespace, or ‘1' as index.

Exit Paths: Success, Not Found, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the
node is the element itself.

Base Name IN String Optional. Base name of the parameter
Namespace IN String Optional. Namespace of the parameter

Index IN Integer
Optional. Zero based index into parameters of the method. If
this parameter is specified, ‘Name' and ‘Namespace' may be
omitted, but if present must match the name and namespace

of the parameter.

Retrieve
Value IN Boolean

Checkbox:

False Do not retrieve value

True Default. Return node value

Disable retrieval of value if parameter contains a large XML
document and the value is not used (performance option).

Parameter
Element OUT Node Parameter element

Parameter
Base Name OUT String Base name of the parameter element

Parameter
Namespace OUT String Namespace URI of the parameter element

Parameter
Index OUT Integer Zero based index of the parameter element in the child list of

the method element.
Value OUT String Value of the parameter

SOAP Add RPC Parameter

This is a convenience tool for composing RPC requests or responses. It adds a parameter element to the
first element in the body of the envelope, which represents the method in RPC requests. Use the XML
tools to add complex data (not just a string) to the parameter by manipulating the returned ‘Parameter
Element' node.

The <Body> element must have a child element (method element). Otherwise this tool fails. When using
‘SOAP Create Envelope', you must add a method element using ‘SOAP Add Body Element'. The ‘SOAP
Create RPC Response' tool already adds a method element.

Exit Paths: Success, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document node
whose document element is <SOAP-ENV:Envelope> or the node is
the element itself.

Name IN String Qualified name of the parameter

Namespace IN String

Optional. Namespace URI of the element. If the parameter is
omitted and the name has a namespace prefix, the tool will
search in the parent elements for the namespace with the same
prefix and make the element a member of that namespace.

Value IN String Optional. Value of the parameter
Parameter
Element OUT Node Node of the element that just has been added to the method

element.

SOAP Get RPC Method Info

This is a convenience tool for examining RPC requests. It retrieves the first child element of the SOAP
<Body> element (Method element in RPC requests). It also returns a collection containing the child
elements of the method, which constitute the method arguments. The tool exits through ‘No Method' if
the body does not contain an element. It returns through <Fault> if the body contains a <Fault>
element.

Exit Paths: Success, Fault, No Method, Failure

Parameter Dir Type Remarks

Envelope IN Node
Envelope node of the SOAP payload. Can be a document
node whose document element is <SOAP-ENV:Envelope> or
the node is the element itself.

Method
Element OUT Node Node of the method element (first child of the Body)

Method Base
Name OUT String Base name of the method element

Method
Namespace OUT String Namespace URI of the method element

Parameters OUT NodeIter
Iterator to collection of RPC parameter elements. Use the
‘SOAP Get Next RPC Parameter' or ‘XML Get Next Node' tool
to iterate over collection.

Parameter
Count OUT Integer Number of items in the Parameters collection

SOAP Get Next RPC Parameter

This tool returns the element node at the current iterator position and returns an iterator to the next
position. As the iterator is just a variable, you can make copies at any time to remember a certain
position, for example the start position. By using the same variable as input and output iterator, you can
easily iterate over the list by connecting the Success path back to this tool (after processing the node, of
course). The tool takes the ‘End' exit when the iterator points to an empty list or the iteration is
complete (list traversed to end).

The tool will fail (take the Failure exit) if the node to which ‘Parameter Iterator' points is not an element!
This cannot happen if the iterator was obtained through ‘SOAP Get RPC Method Info'.

Exit Paths: Success, End, Failure

Parameter Dir Type Remarks

Parameter
Iterator IN NodeIter Iterator to collection of parameter of a method.

Retrieve Value IN Boolean

Checkbox:

False Do not retrieve value

True Default. Return node value

Disable retrieval of value if value is not used and
parameter may contain a large XML document.

Next Parameter OUT NodeIter Iterator pointing to next parameter in the list
Parameter
Element OUT Node Node of the parameter element

Parameter Base
Name OUT String Base name of the parameter element

Parameter
Namespace OUT String Namespace URI of the parameter element

Value OUT String Value of the parameter

SOAP Create RPC Response

This is a convenience tool for composing the response envelope for an RPC request. It copies the source
envelope and replaces the method element in the body with an element that has the same name but
"Response" added to its name. It also adds a <Result> element as child of the method element. Usually,
the type of the return value is given by the service description and doesn't need to be included in the
<Result> element. However, the service may define the type as xsd:anyType, for example for VARIANT
types. In this case, the type must be included in the argument. The ‘Return& Value Type' argument
permits specifying the type of the result value. For example, if a type of "double" is specified, the
<Result> element will look as follows:

<Result xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:type="xsd:double">1234.567</Result>

The selection namespaces from the source envelope document are copied to the response envelope
document as well. The tool fails if the request body does not contain a method element.

Exit Paths: Success, Failure

Parameter Dir Type Remarks
Envelope IN Node Envelope node of the request SOAP payload. Can be a

document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Method Name
Mask IN String

Optional. Mask to create the name of the response method.

The string passed here may contain the following substitution
tags:

%1 Namespace prefix of the first child element of the <Body>
element (RPC method).

%2 Base name of the first child element of the <Body>
element (RPC method).

%{ Treat everything up to closing ‘}' as XPath query to be run
against the ‘Envelope' node and substitute the value of the
first node found into element name string.

%% ‘%' character

Default: "%1:%2Response".
Method
Namespace IN String Optional. Namespace of the method element. If not

specified, namespace of request method is used.

Result Element
Name IN String

Optional. Name of the return value element (first child of the
method element).

Default: "result"

Result Element
Namespace IN String

Optional. Namespace URI of the result element. If the
parameter is omitted and the name has a namespace prefix,
the tool will search in the parent elements for the namespace
with the same prefix and make the element a member of
that namespace.

Return Value IN String Optional. Return value of the method. It will be set as
content of the <Result> child element.

No Return
Value (void
response)

IN Boolean

Checkbox:

False Default. Add a <Result> element.

True No <Result> element is added (void method).

Copy Header IN Boolean

Checkbox:

False Default. Does not copy the <Header> element from the
source envelope.

True Copies the <Header> element and its content from the
source envelope.

Copy Method
Element
Attributes

IN Boolean

Checkbox:

False Default. Don't copy attributes from request method
element.

True Copy all attributes of the request method element into
response method element.

Response
Envelope OUT Node Document node of the response envelope

Method
Element OUT Node Node of the response method element.

Result Element OUT Node Node of the <Result> element in the method element.

SOAP Set Element Type

In SOAP, the type of an argument or the return value is specified by the service description and doesn't
need to be included in the payload. However, the service may define the type as xsd:anyType, for
example for VARIANT types. In this case, the type must be included in the argument. For example, if a
type of "double" is specified, an element will look as follows:

<Element xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:type="xsd:double">1234.567</Element>.

The type may be a user defined (complex) type. For example:

<ns1:Order xmlns:ns1="uri:my-order-type"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="ns1:Order">

<ns1:Product>Watchmacallit</ns1:Product>

<ns1:Quantity>7</ns1:Quantity>

<ns1:Price>19.99</ns1:Price>

</ns1:Order>.

Please refer to http://www.w3.org/TR/xmlschema-0 or http://www.w3.org/TR/xmlschema-2 for details
on the XML Schema Data types.

Parameter Dir Type Remarks

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-2

Element IN Node Node of an element whose Schema instance type to set

Type IN String

XSD type to declare for this element. The argument may
either be just the type name or have schema namespace
prefix, such as xsd:string. If the type argument does not
contain a prefix, xsd will be used.

Type
Namespace IN String

Optional. Namespace of the type.

Default: http://www.w3.org/2001/XMLSchema

XSI Namespace IN String

Optional. XML Schema Instance namespace.

Default:
http://www.w3.org/2001/XMLSchema-instance

XSI Namespace
Prefix IN String

Optional. Prefix of the schema instance namespace.

Default: xsi

Declare
Namespaces in
Envelope

IN Boolean

Checkbox:

False Declares the XSD and XSI namespaces in the element
itself.

True Default. Declare the XSD and XSI namespaces in the
Envelope element (actually, the document element is used, as
this tool may be for other purposes than SOAP).
If any of the parent elements already has a NS declaration for
a prefix and the namespace URI is different, the declaration
will be added to the element, and not the Envelope.

Exit Paths: Success, Failure

SOAP Create Array

Turns an element, for example an RPC parameter, into a SOAP array. The array is created for values
supplied as list of strings or just a number of empty elements that can be populated with complex data.
The following is a sample array as produced by this tool (default argument):

<Element xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

 SOAP-ENC:arrayType="xsd:string[5]"

 xsi:type="SOAP-ENC:Array">

 <xsd:string>first</xsd:string>

 <xsd:string>second</xsd:string>

 <xsd:string>third</xsd:string>

 <xsd:string>fourth</xsd:string>

 <xsd:string>fifth</xsd:string>

</Element>

If the element already has child elements, they are all removed before the array elements are added.
The array items may be user defined (complex) types. Use the ‘XML Get Next Item' tool to iterate
through the 'Item Elements' collection and populate the items. For example:

<Element xmlns:ns1="uri:my-order-type"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

 SOAP-ENC:arrayType="ns1:Order[3]"

 xsi:type="SOAP-ENC:Array">

 <ns1:Order>

 <ns1:Product>Watchmacallit</ns1:Product>

 <ns1:Quantity>3</ns1:Quantity>

 <ns1:Price>19.99</ns1:Price>

 </ns1:Order>

 <ns1:Order>

 <ns1:Product>Doodleany</ns1:Product>

 <ns1:Quantity>9</ns1:Quantity>

 <ns1:Price>12.49</ns1:Price>

 </ns1:Order>

 <ns1:Order>

 <ns1:Product>Ozadingdong</ns1:Product>

 <ns1:Quantity>1</ns1:Quantity>

 <ns1:Price>43.15</ns1:Price>

 </ns1:Order>

</Element>

For details on the XML Schema Data types, refer to http://www.w3.org/TR/xmlschema-0 or
http://www.w3.org/TR/xmlschema-2.

Exit Paths: Success, Empty, Failure

Parameter Dir Type Remarks

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-2

Element IN Node Node of the parameter to turn into an array.

Values IN StringList Optional. List of strings to set as the array items. If not
specified, empty elements will be created.

Size IN Integer

Optional. Size of the array. If not specified, the length of the
‘Values' list specifies the size. If both a ‘Values' and ‘Size'
argument are given, the ‘Size' has precedent and either not
all items of the ‘Values' list are included or the array is
padded with elements containing the ‘Default Value'.

Default Value IN String

Optional. Default array item value for padding items (if ‘Size'
is larger than size of ‘Values' or no ‘Values' defined).

Default: No value (padding elements will be empty)

Array Type IN String

Optional. Type of the array. The argument may either be just
the type name or have schema namespace prefix, such as
xsd:string. If the type argument does not have a prefix, xsd
will be used.

Default: xsd:string

Type
Namespace IN String

Optional. Namespace of the array type.

Default: http://www.w3.org/2001/XMLSchema

Encoding
Prefix IN String

Optional. Prefix of the encoding namespace
(http://schemas.xmlsoap.org/soap/encoding/).

Default: SOAP-ENC

Item Element
Name IN String

Optional. Qualified name of the array items.

Default: Qualified array type (thus, the default item element
name is xsd:string).

Item Element
Namespace IN String

Optional. Namespace of the array items.

Default: Namespace of the prefix of ‘Item Element Name'. If
no prefix, empty namespace.

XSI
Namespace IN String

Optional. XML Schema Instance namespace.

Default:
http://www.w3.org/2001/XMLSchema-instance

XSI
Namespace
Prefix

IN String
Optional. Prefix of the schema instance namespace.

Default: xsi

Include XSI
Type
Declaration

IN String

Checkbox:

False Do not add a type declaration for the array.

True Default. Add XSI type declaration for the SOAP Array. If
all parameters are default the declaration is:
xsi:type="SOAP-ENC:Array".

Declare
Namespaces
in Envelope

IN Boolean

Checkbox:

False Declares the namespaces in the element itself.

True Default. Declare the namespaces in the Envelope
element (if they aren't already). If any of the parent
elements already has a NS declaration for a prefix and the
namespace URI is different, the declaration will be added to
the element, and not the Envelope.

Return Item
Element
Collection

IN Boolean

Checkbox:

False Does not return collection of array items (‘Array Items'
is returned as NULL).

True Default. Return collection ‘Array Items' containing all
items of the array.

Item
Elements OUT NodeIter Iterator pointing to first element of a collection containing

the nodes of the array items.

Count OUT Integer

Number of items in the array.

NOTE: this value is returned, even if ‘Return Item Collection'
is False.

Invocation Tools

Invocation Tools

SOAP HTTP Request

This tool issues an HTTP request to the specified URL with the SOAP request envelope as payload. The
response body is parsed and returned as response envelope. The URL may have the following format
(also see RFC2396 at http://www.rfc.net/rfc2396.html):

['http://'] <host> [':' <port>] ['/' <path> ['?' <query>]]

The (UNICODE) string passed as URL is converted to UTF-8 and invalid characters in the resulting string
are escaped according to RFC2396 (%<hexvalue>). The structure of the request sent to the host will be
as follows:

http://www.rfc.net/rfc2396.html

'POST ' <path> ' HTTP/1.1' CRLF

'Host: ' <host> [':' <port>] CRLF

'Content-Type: text/xml; charset="' <charset> '"' CRLF

'Content-Length: ' <bodysize> CRLF

'SOAPAction: "' <SOAPAction> '"' CRLF

[<additional headers>]

CRLF

<SOAP envelope body>

The ‘Additional HTTP Headers' parameter can be used to supply additional HTTP header elements. The
headers must have the form {<name> ' :' <value> [CR] LF }* The header elements in this argument have
precedence over the default headers generated by the tool. Thus, if the ‘Additional HTTP Headers'
parameter contains a ‘Content-Length header, it will be used (with potentially unexpected results, of
course).

The response body will be parsed and returned as ‘Response Envelope' if the content type is text/xml.
Otherwise, the body is returned in ‘Raw Response Body' and an empty document node is returned as
‘Response Envelope'. This document node can be queried for information about what went wrong.

This tool maintains a global cache of the most recently resolved and successfully connected host
addresses to improve performance. Each address resolution is kept for at most 5 minutes.

Exit Paths

Success

Request was processed successfully (2xx code) and body is valid XML.

SOAP Fault

Response body contains a <Fault> element.

EmptyResponse

Response body was empty and the HTTP status code was 2xx. Some servers use this to signal
success for methods with no result (void).

Unknown Host

Invalid or unknown hostname (DNS lookup failed)

Connection Error

Unable to establish connection to server: connection failed or existing connection was lost
prematurely.

HTTP Error

HTTP error (3xx, 4xx, 5xx) and it was not a SOAP Fault.

Parse Error

Error parsing the returned XML payload (status was 200 or 500).

Timeout

The request timed out.

Size Limit

The response data exceeded the size limit.

Failure

Some other failure. Use ‘XML Get Error Info' on the ‘Response Envelope' to obtain more
information.

Parameter Dir Type Remarks
Request
Envelope IN Node XML Node of the SOAP envelope to send. Can be

document node or <Envelope> element node.
URL IN String URL of the request. See remarks for details.

SOAP Action IN String

Optional. String to be passed as SOAPAction header. The
string passed here may contain the following substitution
tags:

%1 Namespace of the first child element of the <Body>
element (RPC method).

%2 Base name of the first child element of the <Body>
element (RPC method).

%{ Treat everything up to closing ‘}' as XPath query to be
run against the ‘Request Envelope' node and substitute
the value of the first node found into the SOAPAction
string.

%% ‘%' character

If this argument is not specified, the following mask will be
used as default: "%1#%2".
The value "NONE" may be specified to suppress addition
of the SOAPAction header.

Additional HTTP
Headers IN String Optional. Additional HTTP Headers, separated by LF

characters (\n). See remarks for details.

Selection
Namespaces IN String

Optional. Selection namespaces to set in response
envelope document.

Default: Copy selection namespaces from request
envelope document.

Timeout IN Integer

Optional. Maximum time the request may take before
timing out (in milliseconds).

-1 à Never timeout.

Default: 60000 (60 seconds)

Max Response
Size IN Integer

Optional. Size limit of the response data. If the data
returned by the server exceeds this limit, the data is not
processed and the tool fails. This prevents denial of
service attacks. Default: 1MB.

Escape URL IN Boolean

Checkbox:

False URL is already escaped.

True Default. Escape invalid characters in the URL with
%<hexvalue> according to RFC2396.

Always Return
Raw Response
Body

IN Boolean

Checkbox:

False Default. Do not return raw response body.

True Returns the raw data of the response body as string
(‘Raw Response Body).

Response
Envelope OUT Node

Document node of the response envelope. If an error
occurred, an empty document is returned which can be
queried using ‘XML Get Error Info'.

Status Code OUT Integer HTTP status code of the response (e.g. 200, 500, etc).

Status Text OUT String HTTP status text of the response (e.g. "OK", "Internal
Server Error", etc.)

Response
Headers OUT String HTTP Headers returned by the server, separated by a LF

(\n).

Raw Response
Body OUT String

Raw data of the response body (data that is parsed as
response envelope). This string is only returned if the
‘Always Return Raw Response Body' parameter is True, an
error occurs, or the response content type is not XML.

Helper Tools

Helper Tools

SOAP Base64 Encode

Converts the string (which is UNICODE) into the specified character set (default = UTF-8) and encodes
the resulting data into a Base64 string. Characters that cannot be translated to the destination character
set will be represented as ‘?'. Wide character sets, such as UTF-16 are currently not supported. SOAP
does not mandate a maximum line width for base64 encoded data. Some other protocols, such as
MIME, do.

Exit Paths: Success, Failure

Parameter Dir Type Remarks
Data IN String String to encode Base64

Character Set IN String Optional. Character set to convert data into before encoding.
Default: ‘UTF-8'

Max Line
Width IN Integer

Optional. Maximum width of a line in characters.

–1 = unlimited (default).

Line Separator IN String
Optional. String inserted as line separator.

Default: "\r\n" (CR/LF)
Encoded Data OUT String String after encoding data Base64

SOAP Base64 Decode

Decodes the base64 encoded string into the binary representation and converts it to UNICODE based on
the specified character set. Thus, the character set argument specifies the character set of the base-64
encoded data.

Exit Paths: Success, Failure

Parameter Dir Type Remarks
Encoded
Data IN String Base64 encoded data

Character
Set IN String Optional. Character set of the base64 encoded data. Default:

‘UTF-8'
Decoded OUT String Data after decoding from Base64 and transforming from

Data ‘Character Set' to UNICODE.

SOAP Base64 Encode File

Reads the specified file as binary data and encodes it into a base64 string. Encoding a file prepares it for
transport inside a SOAP payload. For example, a SOAP request might encode a wave file, and send it to
CIC server. SOAP does not mandate a maximum line width for base64 encoded data. Some other
protocols, such as MIME, do. This tool can be used to send any kind of data through SOAP requests. For
example, you could encode a wave file.

Exit Paths: Success, File Not Found, Access Denied, Failure

Parameter Dir Type Remarks
Filename IN String Filename and path of the file to encode

Max Line Width IN Integer
Optional. Maximum width of a line in characters.

–1 = unlimited (default).

Line Separator IN String
Optional. String inserted as line separator.

Default: "\r\n" (CR/LF)
Encoded Data OUT String Base64 encoded content of the file

SOAP Base64 Decode To File

Decodes the base64 encoded string into the binary representation and writes the data to the specified
file as binary data.

Exit Paths: Success, Access Denied, Failure

Parameter Dir Type Remarks
Encoded Data IN String Base64 encoded data

Filename IN String Filename and path of the file to which to write the
decoded data.

Append To Existing
File IN Boolean

Checkbox:

False Default. Create new file or truncate existing file.

True Create new file or append to existing file.

Appendix C: Structure of IP Notification Messages

Appendix C: Structure of IP Notification Messages

For the purpose of the SOAP implementation, message transport is not limited to any kind of protocol.
SOAP requests are sent as notifications containing payload data as well as transport-specific out-of-band
information. As HTTP is most frequently used as transport for SOAP requests through the internet, an
ISAPI listener is provided (see SOAP ISAPI Listener Task for IIS). However, any kind of client who "talks"
Notifier could issue SOAP requests. For example, a COM object that allows to directly send SOAP packets
to CIC.

HTTP and Notifier protocols transport SOAP messages between components in the CIC environment.

Since Interaction Processor does not directly support Notifier requests, notifications are used to emulate
the request/response mechanism. The SOAP request notifications use CIC's eSOAP_REQUEST_OBJECT
object type and an object ID that identifies the client. The notification event ("Initiator Event") can either
be explicitly specified or the SOAPAction is will be used as default. The response is sent back to the client
with the object type eSOAP_RESPONSE_OBJECT. The object ID uniquely identifies the client and is used
to send the response back to the right client. The clients use GetNotifierSequenceNumber to obtain a
unique identifier to identify themselves. Clients that do not expect a response must set the ‘Respond'
flag in the request data block to ‘false'. The Message data of the request and response have the
following structure.

Request Message Structure
Field Name Type Description
Version int 2 (Version number of the message structure).

RequestId DWORD Request identifier specified by the client to identify the response.
The server must send it back in the response.

ClientName string Name of the client

Respond bool
False Server must not send a response back to the client.

True Server must send a response to the client.
InitiatorEvent string String of the notification Event-ID. Often same as SOAPAction.
SOAPAction string SOAP Action name

TransportInfoSize DWORD Size in bytes of the transport information data block

TransportInfoData BYTE[]

Transport information data. This is an XML document that encodes
transport specific information. For example, for HTTP it contains
the verb as well as the HTTP header fields. The default character
set is UTF-8, but the data block may contain an XML declaration
with the appropriate encoding attribute.

This field may be omitted (Size = 0). See SOAP ISAPI Filter Schema
for schema details.

PayloadSize DWORD Size in bytes of the SOAP payload data block

PayloadData BYTE[]
This is the data of the SOAP envelope. The default character set is
UTF-8, but the data block may contain XML declaration with the
appropriate encoding attribute.

Response Message Structure
Field Name Type Description
Version int 2 (Version number of the message structure).

RequestId DWORD
Request identifier specified by the client to identify the
response. The server fills this slot with the value in the request
data.

ResultCode enum

Enumeration indicating how the request was processed.

Succeeded (0)

The SOAP request was processed successfully and without
fault.

Failed (1)

The SOAP request failed. This flag is set by the ‘SOAP Send
Response' tool when the body contains a <Fault> element. A
client can thus check for a failed request without having to
unpack the payload.

Unhandled (2)

The Initiator fired, but the handler did not invoke ‘SOAP Send
Response' to return a response (the ‘SOAP Request' handle
went out of scope).
The payload and transport control data are empty.

TransportControlSize DWORD Size in bytes of the transport control data block

TransportControlData BYTE[] Transport control data. This is an XML document that contains
transport specific out-of-band control data. For example, for

HTTP it contains additional HTTP header fields or status codes
to convey special failures. The default character set is UTF-8,
but the data may contain an XML declaration with the
appropriate encoding attribute. Data block may be empty.

PayloadSize DWORD
Size in bytes of the SOAP response payload data block. The
default character set is UTF-8, but the data may contain an
XML declaration with the encoding attribute.

PayloadData BYTE[] This is the data of the SOAP response envelope. The data block
is empty if the ‘Unhandled' flag is set.

Appendix D: SOAP ISAPI Listener Fault Messages

This appendix lists fault messages returned by the SOAP ISAPI Listener. For general information about
SOAP Faults, refer to section 4.4 of the SOAP Specification at W3C. The URL is
http://www.w3.org/TR/SOAP/. SOAP ISAPI Listener may return the following codes:

Client.ContentType

Unsupported Content-Type specified. Expecting "text/xml" or "application/xml".

Client.ContentLength

The 'Content-Length' field of the HTTP header does not match the length of the data sent by
client.

Client.SOAPAction

The HTTP header does not contain a 'SOAPAction' header field.

Client.PayloadSize

The SOAP payload exceeds the maximum size limit configured for the server.

Server.TooBusy

Server is too busy—too many requests are currently pending.

Server.SOAPAction

The SOAPAction is not recognized by the server (e.g. it doesn't match any filter rules).

Server.NotifierConnection

SOAP ISAPI Listener was unable to establish a Notifier connection with the CIC server to forward
the request.

http://www.w3.org/TR/SOAP/

Server.RequestTimeout

The request was not processed by the CIC server in the allotted time.

Server.NotifierConnectionLost

The SOAP ISAPI Listener lost the Notifier connection while waiting for the request to be
processed by the CIC server.

Server.Switchover

A Switchover was initiated while waiting for the request to be processed. The response was lost.

Server.Error

A general error occurred while server was waiting for request to be processed.

Server.Unhandled

The request was not processed by the CIC server (i.e. a handler was initiated but did not send a
response with the SOAP Send Response tool).

Server.Shutdown

The web server was shut down (ISAPI unloaded) while the request was being processed by the
CIC server.

Glossary

This section explains special terms used in this documentation.

CIC Module

One of the many applications that make up the CIC server. These applications have names like manager,
server, and services. For example, Queue Manager, Fax Server, and Directory Services are all CIC
modules.

COM

Microsoft's Component Object Model. The COM specification helps developers create component
software that is compatible with a variety of languages, including C, ADA, Delphi, Java, and Visual Basic.

Customer Interaction Center (CIC)

Customer Interaction Center offers comprehensive interaction management covering not only
telephone calls, faxes, and e-mail messages, but also Internet text chats, Web callback requests, and
voice over IP calls. Using CIC and the PureConnect platform,, enterprises, contact centers, and service

providers can centralize the processing of all customer interactions and provide a new level of service
and consistency.

Denial of Service Attack

Denial of Service (DoS) attacks are attempts to overload a networked computer system so that it
crashes, disconnects from the network, or becomes so overloaded that it cannot respond to legitimate
requests.

DTD

Document Type Definition. A DTD defines the XML tags that can be used in an XML document, the order
in which tags may appear, and limited information about data types. A DTD can be part of an XML
document or can be referenced as an external file. The validating XML parser compares the DTD to the
XML document and flags any errors. DTDs have been deprecated in favor of XML Schemas.

Handler

A program built in Interaction Designer that performs some action or actions in response to the
occurrence of some event. A handler is a collection of steps organized and linked to form a logical flow
of actions and decisions. Handlers are similar in structure to a detailed flowchart. Handlers can start
other handlers called subroutines. A handler contains only one initiator step which identifies the type of
event that will start the handler.

HRESULT Codes

All COM functions and interface methods return a value of the type HRESULT, which stands for 'result
handle'. HRESULT returns success, warning, and error values. HRESULTs are 32-bit values with several
fields encoded in the value. In Visual Basic, a zero result indicates success and a non-zero result indicates
failure. Common HRESULT values are:

Value Error Meaning
0x8000FFFF E_UNEXPECTED Unexpected failure.
0x80004001 E_NOTIMPL Not implemented.
0x8007000E E_OUTOFMEMORY Ran out of memory.
0x80070057 E_INVALIDARG One or more arguments are invalid.
0x80004002 E_NOINTERFACE No such interface supported.
0x80004003 E_POINTER Invalid pointer.
0x80070006 E_HANDLE Invalid handle.
0x80004004 E_ABORT Operation aborted.
0x80004005 E_FAIL Unspecified error.
0x80070005 E_ACCESSDENIED General access denied error.
0x80000001 E_NOTIMPL Not implemented.
0x80020001 DISP_E_UNKNOWNINTERFACE Unknown interface.

0x80020003 DISP_E_MEMBERNOTFOUND Member not found.
0x80020004 DISP_E_PARAMNOTFOUND Parameter not found.
0x80020005 DISP_E_TYPEMISMATCH Type mismatch.
0x80020006 DISP_E_UNKNOWNNAME Unknown name.
0x80020007 DISP_E_NONAMEDARGS No named arguments.
0x80020008 DISP_E_BADVARTYPE Bad variable type.
0x80020009 DISP_E_EXCEPTION Exception occurred.
0x8002000A DISP_E_OVERFLOW Out of present range.
0x8002000B DISP_E_BADINDEX Invalid index.
0x8002000C DISP_E_UNKNOWNLCID Unknown LCID.
0x8002000D DISP_E_ARRAYISLOCKED Memory is locked.
0x8002000E DISP_E_BADPARAMCOUNT Invalid number of parameters.
0x8002000F DISP_E_PARAMNOTOPTIONAL Parameter not optional.
0x80020010 DISP_E_BADCALLEE Invalid callee.
0x80020011 DISP_E_NOTACOLLECTION Does not support a collection.

HTML

Hypertext Markup Language (HTML) is the markup language used to create World Wide Web pages.

IDispatch Interface

The IDispatch interface provides a late-bound mechanism that can be used to access information about
the methods or properties of an object.

Initiator

The first step in a handler that waits for a specific type of event to occur. When that event occurs, the
Interaction Processor starts an instance of any handler whose initiator is configured for that event. An
initiator is a required step that starts a handler. There can be only one Initiator in a handler. Initiator
names describe the kind of event used to start a handler. Initiators can pass information from the event
into variables that can be used within a handler. Subroutine initiators are not configured to watch for an
event. Rather, they start when called from another handler.

Interaction Designer

The CIC graphical application development tool for creating, debugging, editing, and managing handlers
and subroutines.

Interaction Processor (IP)

Interaction Processor is the event processing subsystem of Customer Interaction Center that starts
instances of handlers when an event occurs.

IUnknown Interface

Every COM component implements an internal interface named IUnknown. Client applications can use
the IUnknown interface to retrieve pointers to the other interfaces supported by the component.

Method

A method is a software subroutine that performs some type of data processing on an object in a
computer system. Methods are sometimes called functions. Data can be passed when methods are
called to perform some kind of work. For example, you might call a method named GetStockPrice and
pass it a stock symbol to receive the current stock price as the return value.

Namespace

Since XML allows tags and attributes to be defined as needed, name collisions occur when the same
name is assigned to a tag or an attribute, in different databases. For example, a teacher might define an
element named "Grade" to represent a student's score. In the context of an agricultural operation,
"Grade" could have a different meaning, as in "Grade A" eggs.

Namespaces resolve collision issues by associating XML attribute and element names with a specific
context, or "namespace". A namespace is an identifier that helps computer programs determine
whether identically named elements refer to the same type of data. Using namespaces, a program can
determine that a data element named "Grade" in the "Schoolwork" namespace is different from an
element called "Grade" in the "EggQuality" namespace.

Notifier

The CIC module that acts as a communication center for all other modules. Notifier listens for events
generated by other modules and notifies other interested modules that the event has occurred. Notifier
uses a publish-and-subscribe paradigm.

Package

A SOAP package contains information needed to invoke a web service.

Payload

A payload contains data in XML format that is passed to or from a function. Request payloads contain
everything needed to execute a function, including data and arguments passed as parameters. Response
payloads contain the values that are returned from a function.

Processing Instruction

Processing instructions are read by application-level code (such as parsers) and are used to
communicate information without changing the content of an XML document. For example, <?xml
version="1.0"?> is a processing instruction that indicates that a document conforms to XML 1.0
specifications.

Processing instructions use <?target declaration ?> notation; where target is the name of the application
that should process the instruction, and declaration is an instruction or identifier that is meaningful to
the application. In the above example, xml is a reserved target that identifies XML parsers.

Protocol

A protocol is a set of rules that one computer uses to communicate with another.

Schema

XML Schema are the successor to DTDs for XML. XML schemas describe method calls, and can recognize
and enforce data-types, inheritance, and presentation rules. A schema can be part of an XML document
or can be referenced as an external file.

SOAP

Simple Object Access Protocol. SOAP is an XML-based protocol that requests or receives information
from peer computers in a decentralized, distributed network. SOAP defines the minimal set of
conventions that are needed to invoke code using XML and HTTP.

SOAP is used to invoke methods on servers, services, components and objects in another computer.
SOAP specifies the XML vocabulary needed to specify method parameters, return values, and
exceptions.

TCP/IP

Transmission Control Protocol/Internet Protocol.

Tool

The definition of a single action that can be performed within a handler. This definition includes name,
label, runtime information (DLL and function), possible return codes, and parameters. Tools dragged
into a handler become steps in that handler.

Valid

A valid XML document conforms to a document structure defined by a schema or DTD (Document Type
Definition). Valid documents are well-formed documents that have a DTD or schema applied to them.

Vocabulary

A vocabulary is the set of tags and attributes that are used in an XML document.

Web Service

A web service is a method that can be invoked across the Internet. A web service can perform virtually
any data processing activity, ranging from simple information lookups to complicated business
transactions. SOAP is frequently employed to invoke web services.

Well-Formed

Well-formed documents follow the rules of XML.

WSDL

Web Services Description Language—an XML-based language that defines the functionality offered by a
web service and how to access it. WSDL makes it possible to describe services on CIC so that a
worldwide audience can find and use them. WSDL describes a service, the parameters required to
invoke it, and the location of the endpoint where the service can be accessed.

XML

Extensible Markup Language. XML provides a structured way to define data in plain text format, so that
data can be exchanged between computers.

XSL/XSLT

Extensible Style Language (XSL) is a specification used to transform XML documents into HTML. XSL
Transformation (XSLT) provides similar functionality that transforms XML data into a different XML
structure.

Revisions

CIC 2018 R2

1. Added procedure, Configuring IC SOAP Listener to work with IC 4.0 and 2015 or later.
2. Added procedure, Additional configuration steps required for SOAP Listener when using IIS7.

CIC 2018 R1

1. Rebranded this document to apply Genesys terminology. Colorized source code. Updated
formatting, copyright and trademarks.

2. Deprecated the procedure titled "Install Microsoft SOAP Install Toolkit". Installing the toolkit is
no longer necessary. All SOAP Toolkits were replaced by the Microsoft .NET Framework. SOAP
Toolkits are no longer supported.

CIC 2015 R4

Added information about new <ICServer2> element in configuration file.

CIC 2015 R1

Updated documentation to reflect changes required in the transition from version 4.0 SU# to CIC 2015
R1, such as updates to product version numbers, system requirements, installation procedures,
references to Interactive Intelligence Product Information site URLs, and copyright and trademark
information.

CIC 4.0 SU1 and SU2

No revisions were made to this document.

CIC 4.0 GA

1. Installation should be performed using the CIC 4.0 GA DVD. Do not use an CIC 3.x DVD.
2. Updated copyrights and trademarks in this document.
3. The Installing and Using SOAP Functionality Technical Reference Guide was renamed to CIC and

SOAP API Developer's Guide. The filename was changed from soap.chm to Soap_API_DG.chm.
4. The SOAP Notifier COM API Developer Guide was renamed to SOAP Notifier COM API

Developer's Guide. The file name was changed from soapnotifiercom.chm to
Soap_Notifier_COM_API_DG.chm.

5. Updated setup instructions for minor changes made to installs.

Copyright and Trademark Information

Interaction Dialer and Interaction Scripter are registered trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2000-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Messaging Interaction Center and MIC are trademarks of Genesys Telecommunications Laboratories,
Inc. The foregoing products are ©2001-2017 Genesys Telecommunications Laboratories, Inc. All rights
reserved.

Interaction Director is a registered trademark of Genesys Telecommunications Laboratories, Inc. e-FAQ
Knowledge Manager and Interaction Marquee are trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2002-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Interaction Conference is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2004-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction SIP Proxy and Interaction EasyScripter are trademarks of Genesys Telecommunications
Laboratories, Inc. The foregoing products are ©2005-2017 Genesys Telecommunications Laboratories,
Inc. All rights reserved.

Interaction Gateway is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Media Server is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2006-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Desktop is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2007-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Process Automation, Deliberately Innovative, Interaction Feedback, and Interaction SIP
Station are registered trademarks of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2009-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Analyzer is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Web Portal and IPA are trademarks of Genesys Telecommunications Laboratories, Inc. The
foregoing products are ©2010-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Spotability is a trademark of Genesys Telecommunications Laboratories, Inc. ©2011-2017. All rights
reserved.

Interaction Edge, CaaS Quick Spin, Interactive Intelligence Marketplace, Interaction SIP Bridge, and
Interaction Mobilizer are registered trademarks of Genesys Telecommunications Laboratories, Inc.
Interactive Intelligence Communications as a Service℠ and Interactive Intelligence CaaS℠ are trademarks
or service marks of Genesys Telecommunications Laboratories, Inc. The foregoing products are ©2012-
2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Speech Recognition and Interaction Quality Manager are registered trademarks of Genesys
Telecommunications Laboratories, Inc. Bay Bridge Decisions and Interaction Script Builder are
trademarks of Genesys Telecommunications Laboratories, Inc. The foregoing products are ©2013-2017
Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interaction Collector is a registered trademark of Genesys Telecommunications Laboratories, Inc.
Interaction Decisions is a trademark of Genesys Telecommunications Laboratories, Inc. The foregoing
products are ©2013-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Interactive Intelligence Bridge Server and Interaction Connect are trademarks of Genesys
Telecommunications Laboratories, Inc. The foregoing products are ©2014-2017 Genesys
Telecommunications Laboratories, Inc. All rights reserved.

The veryPDF product is ©2000-2017 veryPDF, Inc. All rights reserved.

This product includes software licensed under the Common Development and Distribution License
(6/24/2009). We hereby agree to indemnify the Initial Developer and every Contributor of the software
licensed under the Common Development and Distribution License (6/24/2009) for any liability incurred
by the Initial Developer or such Contributor as a result of any such terms we offer. The source code for
the included software may be found at http://wpflocalization.codeplex.com.

A database is incorporated in this software which is derived from a database licensed from Hexasoft
Development Sdn. Bhd. ("HDSB"). All software and technologies used by HDSB are the properties of
HDSB or its software suppliers and are protected by Malaysian and international copyright laws. No
warranty is provided that the Databases are free of defects, or fit for a particular purpose. HDSB shall
not be liable for any damages suffered by the Licensee or any third party resulting from use of the
Databases.

http://wpflocalization.codeplex.com/

Other brand and/or product names referenced in this document are the trademarks or registered
trademarks of their respective companies.

DISCLAIMER

GENESYS TELECOMMUNICATIONS LABORATORIES (GENESYS) HAS NO RESPONSIBILITY UNDER
WARRANTY, INDEMNIFICATION OR OTHERWISE, FOR MODIFICATION OR CUSTOMIZATION OF ANY
GENESYS SOFTWARE BY GENESYS, CUSTOMER OR ANY THIRD PARTY EVEN IF SUCH CUSTOMIZATION
AND/OR MODIFICATION IS DONE USING GENESYS TOOLS, TRAINING OR METHODS DOCUMENTED BY
GENESYS.

Genesys Telecommunications Laboratories, Inc.
2001 Junipero Serra Boulevard
Daly City, CA 94014
Telephone/Fax (844) 274-5992
www.genesys.com

http://www.genesys.com/

	SOAP API Developer's Guide
	SOAP API Developer's Guide
	CIC and SOAP API Developer's Guide
	Audience
	Organization of Material
	Related Documentation
	Recommended Web Links

	Introduction to SOAP in the CIC Environment
	Introduction to SOAP in the CIC Environment
	What is SOAP?

	Who uses CIC's SOAP functionality?
	SOAP's Request/Response Model
	Web Services
	Requests and Responses are XML Documents

	What is XML?
	What is the relationship between XML and markup languages, such as HTML or SGML?
	What is the relationship between XML and markup languages, such as HTML or SGML?
	XML Parsers
	Viewing XML in Internet Explorer or Edge

	Advantages of XML over HTML
	Structure of an XML file
	Listing 1: Sample XML File
	XML Declaration
	Rules that govern tags
	The Root Element
	Child Elements

	Structure of SOAP Messages
	Structure of SOAP Messages
	Envelope Section
	Header Section
	Body Section
	Request Messages
	Listing 4: Request to Invoke Add Method

	Response Messages
	Listing 5: Response from the Add Method

	Fault Messages

	CIC's SOAP Components
	CIC's SOAP Components
	SOAP Tools in Interaction Designer
	Initiator Tools
	Request Tools
	Payload Processing Tools
	Invocation Tools
	Helper Tools

	The SOAP Tracer Utility
	The SOAP Tracer Utility
	Starting SOAP Tracer
	Command Line Arguments

	SOAP Tracer's User Interface
	The Request List Pane
	The Request Payload Pane
	The Response Payload Pane

	Menu Commands
	Toolbar

	SOAP ISAPI Listener Task for IIS
	What is a Listener?
	What is ISAPI?
	What is an endpoint?

	SOAP Notifier COM Objects
	ISoapConnector: the MSSOAP Notifier Connector
	Properties

	Install and Configure SOAP ISAPI Listener
	Install and Configure SOAP ISAPI Listener
	Installation and configuration pre-planning
	Install SOAP Listener
	Post-installation procedures
	I3SOAPISAPIConfig.xml Filter File Format
	<ICServers>
	<Defaults>

	<Rules>

	Sample I3SOAPISAPIConfig File
	Forward only supported SOAPActions to CIC

	Configuring IC SOAP Listener to work with IC 4.0 and 2015 or later
	Update the IC User Configuration
	Update the Registry
	Update Environment Variables
	Update IIS Settings
	Additional steps for switchover pairs

	Additional configuration steps required for SOAP Listener when using IIS7
	SOAP ISAPI Filter Schema
	Reinstall/Uninstall SOAP Listener

	Install SOAP Notifier COM
	Install SOAP Notifier COM
	Reinstall/Uninstall SOAP Notifier COM Components

	Appendix A: SOAP Transport Information and Control
	Appendix A: SOAP Transport Information and Control
	HTTP Transport
	HTTP Transport
	Request (Transport Info)

	Request (Transport Info)
	HTTP Element Attributes
	Request Transport Example

	Response (Transport Control)
	Response (Transport Control)
	Response Transport Example

	Appendix B: SOAP Tools
	Appendix B: SOAP Tools
	Initiator Tools
	Initiator Tools
	SOAP Initiator

	Request Tools
	Request Tools
	SOAP Get Request Info

	SOAP Abort Request
	SOAP Get Transport Info
	SOAP Expects Response
	SOAP Parse Request Payload
	Heuristic
	Exit Paths

	SOAP Send Response
	Exit Paths

	Payload Processing Tools
	Payload Processing Tools
	SOAP Create Envelope

	SOAP Get Body
	SOAP Get Body Element
	SOAP Add Body Element
	SOAP Query Encoding Style
	SOAP Get Header
	SOAP Get Header Element
	SOAP Get Header Elements
	SOAP Add Header Element
	SOAP Get Fault
	SOAP Set Fault
	SOAP Create Fault Response
	SOAP Get RPC Parameter
	SOAP Add RPC Parameter
	SOAP Get RPC Method Info
	SOAP Get Next RPC Parameter
	SOAP Create RPC Response
	SOAP Set Element Type
	Helper Tools
	SOAP Base64 Encode

	SOAP Base64 Decode
	SOAP Base64 Encode File
	SOAP Base64 Decode To File

	Appendix C: Structure of IP Notification Messages
	Appendix C: Structure of IP Notification Messages
	Request Message Structure
	Response Message Structure

	Appendix D: SOAP ISAPI Listener Fault Messages
	Glossary
	CIC Module
	COM
	Customer Interaction Center (CIC)
	Denial of Service Attack
	DTD
	Handler
	HRESULT Codes
	HTML
	IDispatch Interface
	Initiator
	Interaction Designer
	Interaction Processor (IP)
	IUnknown Interface
	Method
	Namespace
	Notifier
	Package
	Payload
	Processing Instruction
	Protocol
	Schema
	SOAP
	TCP/IP
	Tool
	Valid
	Vocabulary
	Web Service
	Well-Formed
	WSDL
	XML
	XSL/XSLT

	Revisions
	CIC 2018 R2
	CIC 2018 R1
	CIC 2015 R4
	CIC 2015 R1
	CIC 4.0 SU1 and SU2
	CIC 4.0 GA

	Copyright and Trademark Information

	CIC and SOAP API Developer's Guide
	Audience
	Organization of Material
	Related Documentation
	Recommended Web Links

	Introduction to SOAP in the CIC Environment
	Introduction to SOAP in the CIC Environment
	What is SOAP?

	Who uses CIC's SOAP functionality?
	SOAP's Request/Response Model
	Web Services
	Requests and Responses are XML Documents

	What is XML?
	What is the relationship between XML and markup languages, such as HTML or SGML?
	What is the relationship between XML and markup languages, such as HTML or SGML?
	XML Parsers
	Viewing XML in Internet Explorer or Edge

	Advantages of XML over HTML
	Structure of an XML file
	Listing 1: Sample XML File
	XML Declaration
	Rules that govern tags
	The Root Element
	Child Elements

	Structure of SOAP Messages
	Structure of SOAP Messages
	Envelope Section
	Header Section
	Body Section
	Request Messages
	Listing 4: Request to Invoke Add Method

	Response Messages
	Listing 5: Response from the Add Method

	Fault Messages

	CIC's SOAP Components
	CIC's SOAP Components
	SOAP Tools in Interaction Designer
	Initiator Tools
	Request Tools
	Payload Processing Tools
	Invocation Tools
	Helper Tools

	The SOAP Tracer Utility
	The SOAP Tracer Utility
	Starting SOAP Tracer
	Command Line Arguments

	SOAP Tracer's User Interface
	The Request List Pane
	The Request Payload Pane
	The Response Payload Pane

	Menu Commands
	Toolbar

	SOAP ISAPI Listener Task for IIS
	What is a Listener?
	What is ISAPI?
	What is an endpoint?

	SOAP Notifier COM Objects
	ISoapConnector: the MSSOAP Notifier Connector
	Properties

	Install and Configure SOAP ISAPI Listener
	Install and Configure SOAP ISAPI Listener
	Installation and configuration pre-planning
	Install SOAP Listener
	Post-installation procedures
	I3SOAPISAPIConfig.xml Filter File Format
	<ICServers>
	<Defaults>

	<Rules>

	Sample I3SOAPISAPIConfig File
	Forward only supported SOAPActions to CIC

	SOAP ISAPI Filter Schema
	Reinstall/Uninstall SOAP Listener

	Install SOAP Notifier COM
	Install SOAP Notifier COM
	Reinstall/Uninstall SOAP Notifier COM Components

	Appendix A: SOAP Transport Information and Control
	Appendix A: SOAP Transport Information and Control
	HTTP Transport
	HTTP Transport
	Request (Transport Info)

	Request (Transport Info)
	HTTP Element Attributes
	Request Transport Example

	Response (Transport Control)
	Response (Transport Control)
	Response Transport Example

	Appendix B: SOAP Tools
	Appendix B: SOAP Tools
	Initiator Tools
	Initiator Tools
	SOAP Initiator

	Request Tools
	Request Tools
	SOAP Get Request Info

	SOAP Abort Request
	SOAP Get Transport Info
	SOAP Expects Response
	SOAP Parse Request Payload
	Heuristic
	Exit Paths

	SOAP Send Response
	Exit Paths

	Payload Processing Tools
	Payload Processing Tools
	SOAP Create Envelope

	SOAP Get Body
	SOAP Get Body Element
	SOAP Add Body Element
	SOAP Query Encoding Style
	SOAP Get Header
	SOAP Get Header Element
	SOAP Get Header Elements
	SOAP Add Header Element
	SOAP Get Fault
	SOAP Set Fault
	SOAP Create Fault Response
	SOAP Get RPC Parameter
	SOAP Add RPC Parameter
	SOAP Get RPC Method Info
	SOAP Get Next RPC Parameter
	SOAP Create RPC Response
	SOAP Set Element Type
	Helper Tools
	SOAP Base64 Encode

	SOAP Base64 Decode
	SOAP Base64 Encode File
	SOAP Base64 Decode To File

	Appendix C: Structure of IP Notification Messages
	Appendix C: Structure of IP Notification Messages
	Request Message Structure
	Response Message Structure

	Appendix D: SOAP ISAPI Listener Fault Messages
	Glossary
	CIC Module
	COM
	Customer Interaction Center (CIC)
	Denial of Service Attack
	DTD
	Handler
	HRESULT Codes
	HTML
	IDispatch Interface
	Initiator
	Interaction Designer
	Interaction Processor (IP)
	IUnknown Interface
	Method
	Namespace
	Notifier
	Package
	Payload
	Processing Instruction
	Protocol
	Schema
	SOAP
	TCP/IP
	Tool
	Valid
	Vocabulary
	Web Service
	Well-Formed
	WSDL
	XML
	XSL/XSLT

	Revisions
	CIC 2018 R2
	CIC 2018 R1
	CIC 2015 R4
	CIC 2015 R1
	CIC 4.0 SU1 and SU2
	CIC 4.0 GA

	Copyright and Trademark Information

	SOAP Create Array
	Invocation Tools
	Invocation Tools
	SOAP HTTP Request
	Exit Paths

	Helper Tools
	Invocation Tools
	SOAP HTTP Request
	Exit Paths

	Helper Tools

