
Soap Notifier COM API Developer's Guide

Printed Documentation

PureConnect powered by Customer Interaction Center® (CIC)

2017 R4

Last updated August 08,2017
(See Change Log for summary of changes.)

Table of Contents
SOAP Notifier COM API Developer's Guide .. 3

Interfaces ... 3

ISOAPBase64 Interface ... 3

ISOAPNotifierTransport Interface .. 7

ISOAPRequest Interface .. 10

ISOAPResponse Interface ... 16

SOAP Transport Information and Control .. 19

HTTP Transport .. 19

Response (Transport Control) .. 21

Structure of IP Notification Messages ... 22

Request Message Structure .. 22

Response Message Structure ... 23

Using Microsoft SOAP Toolkit with ISoapConnector ... 24

Using ISoapConnector (MSSOAP Notifier Connector) .. 24

SOAP Notifier Connector Properties .. 24

Recommended Web Links ... 25

XML .. 25

DTD .. 25

SOAP .. 26

WSDL ... 26

XML Namespaces .. 26

Copyright and Trademark Information.. 26

Glossary ... 27

Revisions ... 31

CIC 2017 R4 ... 31

CIC 2016 R1 ... 31

IC 4.0 Service Updates 1-4 ... 31

IC 4.0 GA ... 31

Glossary ... 32

SOAP Notifier COM API Developer's Guide
Interfaces

ISOAPBase64 Interface
ISOAPBase64::DecodeToBinary Method

Synopsis

Decodes the base64 encoded data and returns it as a SAFEARRAY of bytes.

Function Prototype

HRESULT DecodeToBinary(

 [in] BSTR bstrEncodedData,

 [out, retval] SAFEARRAY(BYTE)* paResult

);

C/C++ Syntax

HRESULT DecodeToBinary(BSTR bstrEncodedData, SAFEARRAY(BYTE)* paResult);

Parameters

bstrEncodedData

The input parameter is a string that contains Base64-encoded data.

paResult

The decoded data is returned as a SAFEARRAY of bytes.

ISOAPBase64::DecodeToFile Method

Synopsis

Decodes base64 encoded data and writes it to a file. Existing output files can be appended or overwritten.

Function Prototype

HRESULT DecodeToFile(

 [in] BSTR bstrEncodedData,

 [in] BSTR bstrFilename,

 [in,optional] VARIANT vtAppendToFile

);

C/C++ Syntax

HRESULT DecodeToFile(BSTR bstrEncodedData, BSTR bstrFilename, VARIANT vtAppendToFile);

Parameters

bstrEncodedData

A string containing the Base64-encoded data you wish to decode.

bstrFilename

The fully qualified path and filename of the file to be created.

vtAppendToFile

This optional parameter determines whether data will be appended to an existing file, if one exists. The default is
False, meaning that existing files are replaced.

ISOAPBase64::DecodeToStream Method

Synopsis

Decodes Base64 encoded data and writes it into the supplied IStream or ISequentialStream.

Function Prototype

HRESULT DecodeToStream(

 [in] BSTR bstrEncodedData,

 [in] IUnknown* pObject

);

C/C++ Syntax

HRESULT DecodeToStream(BSTR bstrEncodedData, IUnknown* pObject);

Parameters

bstrEncodedData

String containing the base54 encoded data.

pObject

An IUnknown pointer to an object supporting IStream or ISequentialStream.

ISOAPBase64::DecodeToString Method

Synopsis

Decodes Base64 encoded data into a string.

Function Prototype

HRESULT DecodeToString(

 [in] BSTR bstrEncodedData,

 [in,optional] VARIANT vtCharacterSet,

 [out, retval] BSTR* pbstrResult

);

C/C++ Syntax

HRESULT DecodeToString(BSTR bstrEncodedData, VARIANT vtCharacterSet, BSTR* pbstrResult);

Parameters

bstrEncodedData

String containing the base54 encoded data.

vtCharacterSet

This optional input parameter is a VARIANT that identifies a character set. Unicode (UTF-8) is used by default. After
decoding, the data is converted to a UNICODE string using this character set. The character set may be specified as
string or as a numeric code page.

pbstrResult

The return value is a string that contains the decoded data.

ISOAPBase64::Encode Method

Synopsis

Encodes the supplied data into a string that is Base64 encoded.

Function Prototype

HRESULT Encode(

 [in] VARIANT vtData,

 [in,optional] VARIANT vtCharacterSet,

 [in,optional] VARIANT vtMaxLineWidth,

 [in,optional] VARIANT vtLineSeparator,

 [out, retval] BSTR* pbstrResult

);

C/C++ Syntax

HRESULT Encode(VARIANT vtData, VARIANT vtCharacterSet, VARIANT vtMaxLineWidth, VARIANT vtLineSeparator,
BSTR* pbstrResult);

Parameters

vtData

The data to be encoded. This may be a string, a SAFEARRAY of bytes, or an object supporting IStream or
ISequentialStream.

vtCharacterSet

This optional input parameter is a VARIANT that identifies a character set. Unicode (UTF-8) is used by default. If the
data to be encoded is a string, the string is converted to the specified character set before it is encoded. The character
set may be specified as string or as a numeric code page.

vtMaxLineWidth

This optional input parameter is a VARIANT that sets the maximum width of a line of encoded data in characters. The
default is 0, which indicates no line breaks.

vtLineSeparator

This optional parameter specifies the characters used to separate lines (e.g. the characters that will be written to
create a line break). The default is CRLF (\r\n).

pbstrResult

The return value is a Base64 encoded string.

ISOAPBase64::EncodeFile Method

Synopsis

Encodes the binary content of a file to create a Base64 encoded string.

Function Prototype

HRESULT EncodeFile(

 [in] BSTR bstrFilename,

 [in,optional] VARIANT vtMaxLineWidth,

 [in,optional] VARIANT vtLineSeparator,

 [out, retval] BSTR* pbstrResult

);

C/C++ Syntax

HRESULT EncodeFile(BSTR bstrFilename, VARIANT vtMaxLineWidth, VARIANT vtLineSeparator, BSTR* pbstrResult);

Parameters

bstrFilename

The Name (and Path) of the file to encode.

vtMaxLineWidth

This optional input parameter is a VARIANT that sets the maximum width of a line of encoded data in characters. The
default is 0, which indicates no line breaks.

vtLineSeparator

This optional parameter specifies the characters used to separate lines (e.g. the characters that will be written to
create a line break). The default is CRLF (\r\n).

pbstrResult

The return value is a Base64 encoded string.

ISOAPNotifierTransport Interface
ISOAPNotifierTransport::Connect Method

Synopsis

Connects the transport to the Notifier server.

Function Prototype

HRESULT Connect(

 [in,optional] VARIANT vtServer,

 [in,optional] VARIANT vtApplicationId,

 [in,optional] VARIANT vtUserId,

 [in,optional] VARIANT vtPassword,

 [in,optional] VARIANT vtClientName,

 [in,optional] VARIANT vtFlags

);

C/C++ Syntax

HRESULT Connect(VARIANT vtServer, VARIANT vtApplicationId, VARIANT vtUserId, VARIANT vtPassword, VARIANT
vtClientName, VARIANT vtFlags);

Parameters

vtServer

This optional input parameter is a VARIANT containing the Name of the Notifier server. If you do not specify a server
name, the name stored in the registry of the localhost is used by default.

vtApplicationId

vtApplicationId is an optional input parameter of type VARIANT.It can contain the Name of the application
establishing the connection.

vtUserId

vtUserId is an optional input parameter of type VARIANT.It can contain the Username for server login.The default
value is an empty string.

vtPassword

vtPassword is an optional input parameter of type VARIANT.It can contain the Password for server login.The default
value is an empty string.

vtClientName

vtClientName is an optional input parameter of type VARIANT.It can contain the Name of the SOAP clientthat will be
sent with the SOAP request for debugging purposes. If you do not specify a value, it uses the value specified for
vtApplicationId.If vtApplicationId is empty, the module name is used instead.

vtFlags

These optional connect flags are masked using any combination of the following:

Flag Description

connectFlag_Default (0) Default setting.

connectFlag_PromptOnFailure
(1) Pop dialog when login fails.

connectFlag_ForcePrompt (2) Always pop a login dialog.

connectFlag_TryBackupFirst (4) Attempt to connect to backup Notifier server first.

connectFlag_DontTryBackup
(8) Connect to server only and not to its backup.

ISOAPNotifierTransport::GetProperty Method

Synopsis

The GetProperty method retrieves a supplemental transport property.

Function Prototype

HRESULT GetProperty(

 [in] BSTR bstrName,

 [out, retval] VARIANT* pvtResult

);

C/C++ Syntax

HRESULT GetProperty(BSTR bstrName, VARIANT* pvtResult);

Parameters

bstrName

The name of a property to retrieve:

Property Name Description

ClientName SOAP client name.

ClientId Read-only. SOAP Client identifier, a dynamically created object identifier that is unique to this
instance.

ServerName Read-only. Name of the server we are connected to.

UserId Read-only. UserId of the connected user.

BackupConfigured Read-only. True if the backup server is configured.

OnLocalHost Read-only. True if this process and Notifier are on the same machine.

pvtResult

The return value is the property identified by bstrName.

ISOAPNotifierTransport::SetProperty Method

Synopsis

SetProperty assigns a value to a supplemental transport property.

Function Prototype

HRESULT SetProperty(

 [in] BSTR bstrName,

 [in] VARIANT vtValue

);

C/C++ Syntax

HRESULT SetProperty(BSTR bstrName, VARIANT vtValue);

Parameters

bstrName

The name of the property you wish to set:

Property Name Description

ClientName SOAP client name.

ClientId Read-only. SOAP Client identifier, a dynamically created object identifier
that is unique to this instance.

ServerName Read-only. Name of the server we are connected to.

UserId Read-only. UserId of the connected user.

BackupConfigured Read-only. True if the backup server is configured.

OnLocalHost Read-only. True if this process and Notifier are on the same machine.

vtValue

The value to assign to the property identified by bstrName.

ISOAPNotifierTransport::Connected Property

get_Connected

This read-only property returns True if the transport is connected to a Notifier server, meaning that the
ISOAPNotifierTransport::Connect method has been called.

Function Prototype

HRESULT Connected(

 [out, retval] VARIANT_BOOL* pbResult

);

C/C++ Syntax

HRESULT get_Connected(VARIANT_BOOL* pbResult);

Parameters

pbResult

True if the ISOAPNotifierTransport::Connect method has been called; otherwise False.

ISOAPRequest Interface
ISOAPRequest::GetProperty Method

Synopsis

Retrieves a supplemental SOAP request property.

Each SOAP request is packaged into a eSOAP_REQUEST_OBJECT object. The component sends the notification and
unpacks the Response message (eSOAP_RESPONSE_OBJECT).

Function Prototype

HRESULT GetProperty(

 [in] BSTR bstrName,

 [out, retval] VARIANT* pvtResult

);

C/C++ Syntax

HRESULT GetProperty(BSTR bstrName, VARIANT* pvtResult);

Parameters

bstrName

The input parameter is a string containing the property name to retrieve.

pvtResult

The return value is a VARIANT containing the value of the named property.

ISOAPRequest::Initialize Method

Synopsis

Initializes the request object and sets the transport to be used. This method does not return a value.

Function Prototype

HRESULT Initialize(

 [in] IUnknown* pTransport

);

C/C++ Syntax

HRESULT Initialize(IUnknown* pTransport);

Parameters

pTransport

The input parameter is an IUnknown pointer to an ISOAPNotifierTransport object. Currently this is the only transport
object supported.

ISOAPRequest::Reset Method

Synopsis

Resets the request object by clearing SOAPAction, TransportInfo, and Payload data. This prepares the object for the
next request.

Function Prototype

HRESULT Reset(void);

C/C++ Syntax

HRESULT Reset(void);

Parameters

None.

ISOAPRequest::Send Method

Synopsis

Sends the request and waits synchronously for the response object to be returned.

Function Prototype

HRESULT Send(

 [in] VARIANT vtTimeout,

 [out, retval] ISOAPResponse** ppResult

);

C/C++ Syntax

HRESULT Send(VARIANT vtTimeout, ISOAPResponse** ppResult);

Parameters

vtTimeout

This input parameter is an optional VARIANT that is the maximum time to wait for a response in milliseconds. The
default is 60000 milliseconds, or one minute.

ppResult

The return value is an object that implements the ISOAPResponse interface, or NULL if no response was expected
(ISOAPRequest::ExpectResponse = False). A COM exception is issued if the request is un-handled. (e.g. the handler
goes out of scope without sending a response) or the request times out.

ISOAPRequest::SetProperty Method

Synopsis

Sets a supplemental SOAP request property.

Function Prototype

HRESULT SetProperty(

 [in] BSTR bstrName,

 [in] VARIANT vtValue

);

C/C++ Syntax

HRESULT SetProperty(BSTR bstrName, VARIANT vtValue);

Parameters

bstrName

The input value a string containing the name of the property you wish to set.

vtValue

The new value of the property identified by bstrName.

ISOAPRequest::SetSOAPPayload Method

Synopsis

Sets the SOAP payload data to be sent with the request. Currently, this must pass an object that supports IStream.
However, strings may be supported in a future release. This method does not return a value.

The payload data must be well-formed, meaning that it conforms to the XML specification. This function does not
check data to see if it is valid or well-formed.

Function Prototype

HRESULT SetSOAPPayload(

 [in] VARIANT vtSOAPPayload

);

C/C++ Syntax

HRESULT SetSOAPPayload(VARIANT vtSOAPPayload);

Parameters

vtSOAPPayload

The input parameter is a VARIANT that contains well-formed payload data.

ISOAPRequest::SetTransportInfo Method

Synopsis

Sets the transport information data to be sent with the request. Currently, this must pass an object that supports
IStream. However, strings may be supported in a future release. This method does not return a value.

The transport information must be well-formed, meaning that it conforms to the XML specification. This function does
not check data to see if it is valid or well-formed. For more information about TransportInfo, refer to Appendix A:
SOAP Transport Information and Control in the Installing and Using IC's SOAP Functionality Technical Reference and
Installation Guide.

Function Prototype

HRESULT SetTransportInfo(

 [in] VARIANT vtTransportInfo

);

C/C++ Syntax

HRESULT SetTransportInfo(VARIANT vtTransportInfo);

Parameters

vtTransportInfo

Well-formed XML data describing transport information that will be sent with the request.

ISOAPRequest::ExpectResponse Property

get_ExpectResponse

This property returns True if a response to this SOAP request is expected. False is returned if the request is a one-way
request that does not generate a response.

Function Prototype

HRESULT ExpectResponse(

 [out, retval] VARIANT_BOOL* pbResult

);

C/C++ Syntax

HRESULT get_ExpectResponse(VARIANT_BOOL* pbResult);

Parameters

pbResult

True if a response is expected; otherwise False for one-way requests.

put_ExpectResponse

Set this property True if the request should generate a response. If the request is a one-way request that does not
generate a response, set this property to False.

Function Prototype

HRESULT ExpectResponse(

 [in] VARIANT_BOOL bExpectResponse

);

C/C++ Syntax

HRESULT put_ExpectResponse(VARIANT_BOOL bExpectResponse);

Parameters

bExpectResponse

True if the request should generate a response; otherwise False.

ISOAPRequest::InitiatorEvent Property

get_InitiatorEvent

Returns the Initiator Event of this request. Uses SOAPAction if the event is not specified or empty. Changing the
SOAPAction also resets this property.

Function Prototype

HRESULT InitiatorEvent(

 [out, retval] BSTR* pbstrResult

);

C/C++ Syntax

HRESULT get_InitiatorEvent(BSTR* pbstrResult);

Parameters

pbstrResult

The notification event of this request.

put_InitiatorEvent

Sets the Initiator Event of this request. Uses SOAPAction if the event is not specified or empty. Changing the
SOAPAction also resets this property.

Function Prototype

HRESULT InitiatorEvent(

 [in] BSTR bstrInitiatorEvent

);

C/C++ Syntax

HRESULT put_InitiatorEvent(BSTR bstrInitiatorEvent);

Parameters

bstrInitiatorEvent

The notification event of this request.

ISOAPRequest::SOAPAction Property

get_SOAPAction

Gets the SOAPAction code of the request.

Function Prototype

HRESULT SOAPAction(

 [out, retval] BSTR* pbstrResult

);

C/C++ Syntax

HRESULT get_SOAPAction(BSTR* pbstrResult);

Parameters

pbstrResult

The return value is a string containing the SOAPAction for this request.

put_SOAPAction

Sets the SOAPAction code of this request.

Function Prototype

HRESULT SOAPAction(

 [in] BSTR bstrSOAPAction

);

C/C++ Syntax

HRESULT put_SOAPAction(BSTR bstrSOAPAction);

Parameters

bstrSOAPAction

The input parameter is a string containing the SOAPAction to assign to this request.

ISOAPRequest::Transport Property

get_Transport

The Transport property is read-only. It returns an IUnknown pointer to the transport object used for requests.

Function Prototype

HRESULT Transport(

 [out, retval] IUnknown** ppResult

);

C/C++ Syntax

HRESULT get_Transport(IUnknown** ppResult);

Parameters

ppResult

The return value is an IUnknown pointer to the transport object.

ISOAPResponse Interface
ISOAPResponse::WritePayload Method

Synopsis

This method writes payload data to an ISequentialStream passed as an argument.

Function Prototype

HRESULT WritePayload(

 [in] IUnknown* pObject

);

C/C++ Syntax

HRESULT WritePayload(IUnknown* pObject);

Parameters

pObject

IUnknown pointer to an ISequentialStream object.

ISOAPResponse::WriteTransportCtrlData Method

Synopsis

This method writes transport control data to an ISequentialStream passed as an argument. If there is no transport
control data, nothing is written, but the method succeeds.

Function Prototype

HRESULT WriteTransportCtrlData(

 [in] IUnknown* pObject

);

C/C++ Syntax

HRESULT WriteTransportCtrlData(IUnknown* pObject);

Parameters

pObject

IUnknown pointer to an ISequentialStream object.

ISOAPResponse::Fault Property

get_Fault

Returns True if the server returned a SOAP Fault message; otherwise False.

Function Prototype

HRESULT Fault(

 [out, retval] VARIANT_BOOL* pbResult

);

C/C++ Syntax

HRESULT get_Fault(VARIANT_BOOL* pbResult);

Parameters

pbResult

True if the server returned a SOAP Fault message; otherwise False.

ISOAPResponse::Payload Property

get_Payload

Returns an IUnknown pointer to an object that implements IStream, so that you can access the object's SOAP
response payload data.

Function Prototype

HRESULT Payload(

 [out, retval] IUnknown** ppResult

);

C/C++ Syntax

HRESULT get_Payload(IUnknown** ppResult);

Parameters

ppResult

IUnknown pointer to an IStream object.

ISOAPResponse::RequestId Property

get_RequestId

Returns the Identifier of this request.

Function Prototype

HRESULT RequestId(

 [out, retval] long* plResult

);

C/C++ Syntax

HRESULT get_RequestId(long* plResult);

Parameters

plResult

The return value is a LONG that contains the request identifier number.

ISOAPResponse::Success Property

get_Success

Returns True if the request was successfully executed on the server; otherwise False.

Function Prototype

HRESULT Success(

 [out, retval] VARIANT_BOOL* pbResult

);

C/C++ Syntax

HRESULT get_Success(VARIANT_BOOL* pbResult);

Parameters

pbResult

True if the request was successfully executed on the server; otherwise False.

ISOAPResponse::TransportCtrlData Property

get_TransportCtrlData

This read-only property returns an object that implements IStream, so that you can access the object's transport
control data.

Function Prototype

HRESULT TransportCtrlData(

 [out, retval] IUnknown** ppResult

);

C/C++ Syntax

HRESULT get_TransportCtrlData(IUnknown** ppResult);

Parameters

ppResult

An IUnknown pointer to the object.

SOAP Transport Information and Control

HTTP Transport
Request (Transport Info)

The following schema describes the transport information for the HTTP transport. The HTTP element is the child
element of the TransportInfo element generated by the ISAPI Listener.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="HTTP" type="HTTP"/>

 <xsd:complexType name="HTTP">

 <xsd:sequence>

 <xsd:element name="Headers" type="Headers" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="method" type="xsd:string" use="required"/>

 <xsd:attribute name="url" type="xsd:string" use="required"/>

 <xsd:attribute name="pathInfo" type="xsd:string" use="required"/>

 <xsd:attribute name="queryString" type="xsd:string" use="required"/>

 <xsd:attribute name="remoteAddr" type="xsd:string" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="Headers">

 <xsd:element name="Header" type="Header" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="Header">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

HTTP Element Attributes

The attributes of the HTTP entry have the following meaning:

method

The HTTP method with which the request was made. In our case usually POST. This is equivalent to the value of the
CGI variable REQUEST_METHOD.

url

Designates the base portion of the URL. Parameter values are not included (see pathInfo and queryString).

pathInfo

Contains the additional path information given by the client. This consists of the trailing part of the URL after the
ISAPI DLL name, but before the query string, if any. Corresponds to the CGI variable PATH_INFO.

queryString

Contains the information that follows the first question mark in the URL Corresponds to the CGI variable
QUERY_STRING.

remoteAddr

Contains the IP address of the client or agent of the client (for example gateway, proxy, or firewall) that sent the
request. Corresponds to the CGI variable REMOTE_ADDR.

Request Transport Example

The following is a sample Transport Info structure adhering to the above schemas:

<TransportInfo name="HTTP">

<HTTP method="POST" url="/soapendpoint/I3SOAPISAPIAD.DLL" pathInfo=""

 queryString="" remoteAddr="127.0.0.1">

<Headers>

<Header name="Host">localhost</Header>

<Header name="Content-Type">text/xml</Header>

<Header name="Content-Length">1234</Header>

<Header name="SOAPAction">"uri:my-soap-request#MyMethod"</Header>

</Headers>

</HTTP>

</TransportInfo>

Response (Transport Control)

The following schema describes the transport control data for the HTTP transport. The HTTP element is the child
element of the TransportCtrl element.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="HTTP" type="HTTP"/>

 <xsd:complexType name="HTTP">

 <xsd:sequence>

 <xsd:element name="Headers" type="Headers" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="statusCode" type="xsd:positiveInteger"
use="optional"/>

 <xsd:attribute name="statusText" type="xsd:string" use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="Headers">

 <xsd:element name="Header" type="Header" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:complexType>

 <xsd:complexType name="Header">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

Response Transport Example

The following is an example of a transport control response structure that "asks" the ISAPI listener to send a 501 error
(Not Implemented) back to the client. The default status codes are 200 (OK) for successfully processed requests, and
500 (Internal Server Error) for failed requests (body contains a <Fault> element).

<TransportCtrl>

 <HTTP statusCode="501" statusText="Not Implemented"/>

</TransportCtrl>

Header fields specified in the TransportControl structure will have precedence over the default headers generated by
the ISAPI listener (such as "Content-Type:text/xml").

Structure of IP Notification Messages

For the purpose of the IC SOAP implementation, message transport is not limited to any kind of protocol. SOAP
requests are sent as notifications containing payload data as well as transport-specific out-of-band information. As
HTTP is most frequently used as transport for SOAP requests through the internet, an ISAPI listener is provided.
However, any kind of client who "talks" Notifier could issue SOAP requests. For example, a SOAP Notifier COM object
can directly send SOAP packets to IC.

HTTP and Notifier protocols transport SOAP messages between components in the IC environment.

Request Message Structure

Since Interaction Processor does not directly support Notifier Requests, notifications are used to emulate the
request/response mechanism. The SOAP request notifications use the IC's eSOAP_REQUEST_OBJECT object type and
an object ID that identifies the client.

Field Name Type Description

Version int 2 (Version number of the message structure).

RequestId DWORD Request identifier specified by the client to identify the response. The server
must send it back in the response.

ClientName string Name of the client

Respond bool
False Server must not send a response back to the client.

True Server must send a response to the client.

InitiatorEvent string

String of the notification Event-ID. Often same as SOAPAction.

The notification event ("Initiator Event") can either be explicitly specified or
the SOAPAction is will be used as default. In early editions of this API, the
Notification Event was always the SOAPAction, but since a handler may
only trigger on one specific event (or a wildcard event), the framework was

expanded so that the notification event ("Initiator Event") can now be
specified explicitly.

SOAPAction string SOAP Action name

TransportInfoSize DWORD Size in bytes of the transport information data block

TransportInfoData BYTE[]

Transport information data. This is an XML document that encodes
transport specific information. For example, for HTTP it contains the verb as
well as the HTTP header fields. The default character set is UTF-8, but the
data block may contain an XML declaration with the appropriate encoding
attribute. This field may be omitted (Size = 0).

PayloadSize DWORD Size in bytes of the SOAP payload data block

PayloadData BYTE[]
This is the data of the SOAP envelope. The default character set is UTF-8,
but the data block may contain XML declaration with the appropriate
encoding attribute.

Response Message Structure

The response is sent back to the client with the object type eSOAP_RESPONSE_OBJECT. The object ID uniquely
identifies the client and is used to send the response back to the right client. The clients use
GetNotifierSequenceNumber to obtain a unique identifier to identify themselves. Clients that do not expect a
response must set the ‘Respond' flag in the request data block to ‘false'. The Message data of the request and
response have the following structure.

Field Name Type Description

Version int 2 (Version number of the message structure).

RequestId DWORD Request identifier specified by the client to identify the response. The server
fills this slot with the value in the request data.

ResultCode enum

Enumeration indicating how the request was processed.

Succeeded (0)

The SOAP request was processed successfully and without fault.

Failed (1)

The SOAP request failed. This flag is set by the ‘SOAP Send Response' tool
when the body contains a <Fault> element. A client can thus check for a
failed request without having to unpack the payload.

Unhandled (2)

The Initiator fired, but the handler did not invoke ‘SOAP Send Response' to
return a response (the ‘SOAP Request' handle went out of scope).

The payload and transport control data are empty.

TransportControlSize DWORD Size in bytes of the transport control data block

TransportControlData BYTE[]

Transport control data. This is an XML document that contains transport
specific out-of-band control data. For example, for HTTP it contains
additional HTTP header fields or status codes to convey special failures. The
default character set is UTF-8, but the data may contain an XML declaration
with the appropriate encoding attribute. Data block may be empty.

PayloadSize DWORD
Size in bytes of the SOAP response payload data block. The default
character set is UTF-8, but the data may contain an XML declaration with
the encoding attribute.

PayloadData BYTE[] This is the data of the SOAP response envelope. The data block is empty if
the ‘Unhandled' flag is set.

Using Microsoft SOAP Toolkit with ISoapConnector

Microsoft's SOAP Toolkit makes it possible for programmers to invoke a web service as easily as invoking a method
on an object. The Microsoft SOAP Toolkit reads in a WSDL file, and dynamically generates COM interfaces for
operations described in the file.

The SOAP Notifier COM API works cooperatively with Microsoft's SOAP Toolkit. The SOAP Notifier COM API provides
a component named ISoapConnector that is used to initiate SOAP handlers using Microsoft SOAP Toolkit 2.0.

Using ISoapConnector (MSSOAP Notifier Connector)

ProgId: ININ.MSSOAPNotifierConnector

The VB example below shows how to use the transport. It is assumed that a WSDL file with the service description
exists, since this is required for MSSOAPLib.SoapClient.

Using the Transport with Visual Basic 6

Dim objTransport As New SOAPNotifierCOMLib.SOAPNotifierTransport

objTransport.Connect "<Notifier>", "<AppId>", "<user>", "<password>", "<ClientName>"

 Dim objClient As New MSSOAPLib.SoapClient

objClient.ClientProperty("ConnectorProgID") = "ININ.MSSOAPNotifierConnector"

objClient.mssoapinit "<WSDL filename or URL>"

objClient.ConnectorProperty("Transport") = objTransport

Result = objClient.<method>(<arguments>...)

Instead of the SoapClient, you may use the MSSOAPLib.SoapSerializer and MSSOAPLib.SoapReader objects with any
object that uses a ISoapConnector.

SOAP Notifier Connector Properties
Transport

Transport object to be used for server communication. Must be set before the first invocation.

SOAPAction

SOAP Action used in the request. If not defined (empty string), uses value from the WSDL file.

InitiatorEvent

Initator Event (notification event) of the request notification. If not specified or as default, the SOAPAction is used.
Changing the SOAPAction also resets this property, unless the PreserveInitiatorEvent property is set.

If the SOAPAction has never been set or is an empty string and the value from the WSDL file is used, the InitiatorEvent
is reset after each request (again, unless PreserveInitiatorEvent is True).

PreserveInitiatorEvent

If True, changing the SOAPAction does not change the InitiatorEvent property.

RequestTimeout

Maximum amount of time to wait for response in milliseconds. Value < 0 à infinite. Default = 60000 (1 minute).

TransportInfo

Write only. Transport info data.Must be object implementing IStream.

TransportCtrl

Read only. Transport control data, returns IUnknown of an object implementing IStream. Can only be retrieved after
invocation until the object using the connector calls the ‘BeginMessage' method of the connector (usually, as part of
the next invocation).

ResponseObject

Read Only. Returns the ISOAPResponse object resulting from the request. Can only be retrieved after invocation until
the object using the connector calls the ‘BeginMessage' method of the connector (usually, as part of the next
invocation).

Recommended Web Links

Information about XML and SOAP is available on the Internet, of course. The following sites are recommended:

XML
Extensible Markup Language (XML)

The Extensible Markup Language (XML) Home Page at the World Wide Web Consortium (W3C) offers numerous XML
links:
http://www.w3.org/XML/

XML Tutorial

XML School is a free online tutorial offered by W3Schools:
http://www.w3schools.com/xml/default.asp

O'Reilly XML.COM

XML.com says that its mission is to help you discover XML and learn how this Internet technology can solve real-world
problems in information management and electronic commerce:
http://www.xml.com/

DTD
DTD Table of Contents at XML101.com

Links on this page provide an introduction to DTD, building blocks, elements, attributes, entities, validation, examples,
and more:
http://xml101.com/dtd/

http://www.w3.org/XML/
http://www.w3schools.com/xml/default.asp
http://www.xml.com/
http://xml101.com/dtd/

Introduction to DTD

An introduction to DTD with sample code:
http://xml101.com/dtd/dtd_intro.asp

SOAP
Simple Object Access Protocol (SOAP) 1.1

W3C SOAP specification document:

http://www.w3.org/TR/SOAP/

SOAP Tutorial

SOAP School is a free online tutorial offered at W3Schools:
http://www.w3schools.com/soap/default.asp

WSDL
Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl

XML Namespaces
Namespaces in XML

http://www.w3.org/TR/REC-xml-names/

Copyright and Trademark Information
Interactive Intelligence, Interactive Intelligence Customer Interaction Center, Interaction Administrator, Interaction Attendant, Interaction Client, Interaction
Designer, Interaction Tracker, Interaction Recorder, Interaction Mobile Office, Interaction Center Platform, Interaction Monitor, Interaction Optimizer, and the
“Spirograph” logo design are registered trademarks of Interactive Intelligence, Inc. Customer Interaction Center, EIC, Interaction Fax Viewer, Interaction
Server, ION, Interaction Voicemail Player, Interactive Update, Interaction Supervisor, Interaction Migrator, and Interaction Screen Recorder are trademarks
of Interactive Intelligence, Inc. The foregoing products are ©1997-2015 Interactive Intelligence, Inc. All rights reserved.
Interaction Dialer and Interaction Scripter are registered trademarks of Interactive Intelligence, Inc. The foregoing products are ©2000-2015 Interactive
Intelligence, Inc. All rights reserved.
Messaging Interaction Center and MIC are trademarks of Interactive Intelligence, Inc. The foregoing products are ©2001-2015 Interactive Intelligence,
Inc. All rights reserved.
Interaction Director is a registered trademark of Interactive Intelligence, Inc. e-FAQ Knowledge Manager and Interaction Marquee are trademarks of
Interactive Intelligence, Inc. The foregoing products are ©2002-2015 Interactive Intelligence, Inc. All rights reserved.
Interaction Conference is a trademark of Interactive Intelligence, Inc. The foregoing products are ©2004-2015 Interactive Intelligence, Inc. All rights
reserved.
Interaction SIP Proxy and Interaction EasyScripter are trademarks of Interactive Intelligence, Inc. The foregoing products are ©2005-2015 Interactive
Intelligence, Inc. All rights reserved.
Interaction Gateway is a registered trademark of Interactive Intelligence, Inc. Interaction Media Server is a trademark of Interactive Intelligence, Inc. The
foregoing products are ©2006-2015 Interactive Intelligence, Inc. All rights reserved.
Interaction Desktop is a trademark of Interactive Intelligence, Inc. The foregoing products are ©2007-2015 Interactive Intelligence, Inc. All rights reserved.
Interaction Process Automation, Deliberately Innovative, Interaction Feedback, and Interaction SIP Station are registered trademarks of Interactive
Intelligence, Inc. The foregoing products are ©2009-2015 Interactive Intelligence, Inc. All rights reserved.
Interaction Analyzer is a registered trademark of Interactive Intelligence, Inc. Interaction Web Portal, and IPA are trademarks of Interactive Intelligence,
Inc. The foregoing products are ©2010-2015 Interactive Intelligence, Inc. All rights reserved.
Spotability is a trademark of Interactive Intelligence, Inc. ©2011-2015. All rights reserved.
Interaction Edge, CaaS Quick Spin, Interactive Intelligence Marketplace, Interaction SIP Bridge, and Interaction Mobilizer are registered trademarks of
Interactive Intelligence, Inc. Interactive Intelligence Communications as a Service℠, and Interactive Intelligence CaaS℠ are trademarks or service marks of
Interactive Intelligence, Inc. The foregoing products are ©2012-2015 Interactive Intelligence, Inc. All rights reserved.
Interaction Speech Recognition and Interaction Quality Manager are registered trademarks of Interactive Intelligence, Inc. Bay Bridge Decisions and
Interaction Script Builder are trademarks of Interactive Intelligence, Inc. The foregoing products are ©2013-2015 Interactive Intelligence, Inc. All rights
reserved.
Interaction Collector is a registered trademark of Interactive Intelligence, Inc. Interaction Decisions is a trademark of Interactive Intelligence, Inc. The
foregoing products are ©2013-2015 Interactive Intelligence, Inc. All rights reserved.
Interactive Intelligence Bridge Server and Interaction Connect are trademarks of Interactive Intelligence, Inc. The foregoing products are ©2014-2015
Interactive Intelligence, Inc. All rights reserved.
The veryPDF product is ©2000-2015 veryPDF, Inc. All rights reserved.

http://xml101.com/dtd/dtd_intro.asp
http://www.w3.org/TR/SOAP/
http://www.w3schools.com/soap/default.asp
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/REC-xml-names/

This product includes software licensed under the Common Development and Distribution License (6/24/2009). We hereby agree to indemnify the Initial
Developer and every Contributor of the software licensed under the Common Development and Distribution License (6/24/2009) for any liability incurred
by the Initial Developer or such Contributor as a result of any such terms we offer. The source code for the included software may be found
at http://wpflocalization.codeplex.com.
A database is incorporated in this software which is derived from a database licensed from Hexasoft Development Sdn. Bhd. ("HDSB"). All software and
technologies used by HDSB are the properties of HDSB or its software suppliers and are protected by Malaysian and international copyright laws. No
warranty is provided that the Databases are free of defects, or fit for a particular purpose. HDSB shall not be liable for any damages suffered by the
Licensee or any third party resulting from use of the Databases.
Other brand and/or product names referenced in this document are the trademarks or registered trademarks of their respective companies.

DISCLAIMER

INTERACTIVE INTELLIGENCE (INTERACTIVE) HAS NO RESPONSIBILITY UNDER WARRANTY, INDEMNIFICATION OR
OTHERWISE, FOR MODIFICATION OR CUSTOMIZATION OF ANY INTERACTIVE SOFTWARE BY INTERACTIVE,
CUSTOMER OR ANY THIRD PARTY EVEN IF SUCH CUSTOMIZATION AND/OR MODIFICATION IS DONE USING
INTERACTIVE TOOLS, TRAINING OR METHODS DOCUMENTED BY INTERACTIVE.

Interactive Intelligence, Inc.
7601 Interactive Way
Indianapolis, Indiana 46278
Telephone/Fax (317) 872-3000
www.ININ.com

Glossary
COM

Microsoft's Component Object Model. The COM specification helps developers create component software that is
compatible with a variety of languages, including C, ADA, Delphi, Java, and Visual Basic.

Denial of Service Attack

Denial of Service (DoS) attacks are attempts to overload a networked computer system so that it crashes, disconnects
from the network, or becomes so overloaded that it cannot respond to legitimate requests.

DTD

Document Type Definition. A DTD defines the XML tags that can be used in an XML document, the order in which
tags may appear, and limited information about data types. A DTD can be part of an XML document or can be
referenced as an external file. The validating XML parser compares the DTD to the XML document and flags any
errors. DTDs have been deprecated in favor of XML Schemas.

Handler

A program built in Interaction Designer that performs some action or actions in response to the occurrence of some
event. A handler is a collection of steps organized and linked to form a logical flow of actions and decisions. Handlers
are similar in structure to a detailed flowchart. Handlers can start other handlers called subroutines. A handler
contains only one initiator step which identifies the type of event that will start the handler.

HRESULT Codes

All COM functions and interface methods return a value of the type HRESULT, which stands for 'result handle'.
HRESULT returns success, warning, and error values. HRESULTs are 32-bit values with several fields encoded in the
value. In Visual Basic, a zero result indicates success and a non-zero result indicates failure. Common HRESULT values
are:

0x8000FFFF E_UNEXPECTED Unexpected failure.

0x80004001 E_NOTIMPL Not implemented.

http://wpflocalization.codeplex.com/
http://www.inin.com/

0x8007000E E_OUTOFMEMORY Ran out of memory.

0x80070057 E_INVALIDARG One or more arguments are invalid.

0x80004002 E_NOINTERFACE No such interface supported.

0x80004003 E_POINTER Invalid pointer.

0x80070006 E_HANDLE Invalid handle.

0x80004004 E_ABORT Operation aborted.

0x80004005 E_FAIL Unspecified error.

0x80070005 E_ACCESSDENIED General access denied error.

0x80000001 E_NOTIMPL Not implemented.

0x80020001 DISP_E_UNKNOWNINTERFACE Unknown interface.

0x80020003 DISP_E_MEMBERNOTFOUND Member not found.

0x80020004 DISP_E_PARAMNOTFOUND Parameter not found.

0x80020005 DISP_E_TYPEMISMATCH Type mismatch.

0x80020006 DISP_E_UNKNOWNNAME Unknown name.

0x80020007 DISP_E_NONAMEDARGS No named arguments.

0x80020008 DISP_E_BADVARTYPE Bad variable type.

0x80020009 DISP_E_EXCEPTION Exception occurred.

0x8002000A DISP_E_OVERFLOW Out of present range.

0x8002000B DISP_E_BADINDEX Invalid index.

0x8002000C DISP_E_UNKNOWNLCID Unknown LCID.

0x8002000D DISP_E_ARRAYISLOCKED Memory is locked.

0x8002000E DISP_E_BADPARAMCOUNT Invalid number of parameters.

0x8002000F DISP_E_PARAMNOTOPTIONAL Parameter not optional.

0x80020010 DISP_E_BADCALLEE Invalid callee.

0x80020011 DISP_E_NOTACOLLECTION Does not support a collection.

HTML

Hypertext Markup Language (HTML) is the markup language used to create World Wide Web pages.

CIC Module

One of the many applications that make up the CIC server. These applications have names like manager, server, and
services. For example, Queue Manager, Fax Server, and Directory Services are all IC modules.

IDispatch Interface

The IDispatch interface provides a late-bound mechanism that can be used to access information about the methods
or properties of an object.

Initiator

The first step in a handler that waits for a specific type of event to occur. When that event occurs, the Interaction
Processor starts an instance of any handler whose initiator is configured for that event. An initiator is a required step
that starts a handler. There can be only one Initiator in a handler. Initiator names describe the kind of event used to
start a handler. Initiators can pass information from the event into variables that can be used within a handler.
Subroutine initiators are not configured to watch for an event. Rather, they start when called from another handler.

Customer Interaction Center (CIC)

The Customer Interaction Center PlatformTM is a powerful platform for implementing comprehensive interaction
management covering not only calls and faxes but also e-mail messages, Internet text chats, Web callback requests,
and voice over Net calls. Using the Customer Interaction Center Platform, enterprises, contact centers, and service
providers can centralize the processing of all customer interactions and provide a new level of service and
consistency.

Interaction Designer

The CIC graphical application development tool for creating, debugging, editing, and managing handlers and
subroutines.

Interaction Processor (IP)

Interaction Processor is the event processing subsystem of Customer Interaction Center that starts instances of
handlers when an event occurs.

IUnknown Interface

Every COM component implements an internal interface named IUnknown. Client applications can use the IUnknown
interface to retrieve pointers to the other interfaces supported by the component.

Method

A method is a software subroutine that performs some type of data processing on an object in a computer system.
Methods are sometimes called functions. Data can be passed when methods are called to perform some kind of work.
For example, you might call a method named GetStockPrice and pass it a stock symbol to receive the current stock
price as the return value.

Microsoft SOAP Toolkit

Microsoft's SOAP Toolkit makes it possible for programmers to invoke a web service as easily as invoking a method
on an object. The Microsoft SOAP Toolkit reads in an WSDL file, and dynamically generates COM interfaces for
operations described in the file. It packages method parameters in accordance with WSDL service descriptions.

Namespace

Since XML allows tags and attributes to be defined as needed, name collisions occur when the same name is assigned
to a tag or an attribute, in different databases. For example, a teacher might define an element named "Grade" to
represent a student's score. In the context of an agricultural operation, "Grade" could have a different meaning, as in
"Grade A" eggs. Namespaces resolve collision issues by associating XML attribute and element names with a specific
context, or "namespace". A namespace is an identifier that helps computer programs determine whether identically
named elements refer to the same type of data. Using namespaces, a program can determine that a data element
named "Grade" in the "Schoolwork" namespace is different from an element called "Grade" in the "EggQuality"
namespace.

Notifier

The CIC module that acts as a communication center for all other modules. Notifier listens for events generated by
other modules and notifies other interested modules that the event has occurred. Notifier uses a publish-and-
subscribe paradigm.

Package

A SOAP package contains information needed to invoke a web service.

Payload

A payload contains data in XML format that is passed to or from a function. Request payloads contain everything
needed to execute a function, including data and arguments passed as parameters. Response payloads contain the
values that are returned from a function.

Processing Instruction

Processing instructions are read by application-level code (such as parsers) and are used to communicate information
without changing the content of an XML document. For example, <?xml version="1.0"?> is a processing instruction
that indicates that a document conforms to XML 1.0 specifications. Processing instructions use <?target declaration
?> notation; where target is the name of the application that should process the instruction, and declaration is an
instruction or identifier that is meaningful to the application. In the above example, XML is a reserved target that
identifies XML parsers.

Protocol

A protocol is a set of rules that one computer uses to communicate with another.

Schema

XML Schema are the successor to DTDs for XML. XML schemas describe method calls, and can recognize and enforce
data-types, inheritance, and presentation rules. A schema can be part of an XML document or can be referenced as an
external file.

SOAP

Simple Object Access Protocol. SOAP is an XML-based protocol that requests or receives information from peer
computers in a decentralized, distributed network. SOAP defines the minimal set of conventions that are needed to
invoke code using XML and HTTP. SOAP is used to invoke methods on servers, services, components and objects in
another computer. SOAP specifies the XML vocabulary needed to specify method parameters, return values, and
exceptions.

TCP/IP

Transmission Control Protocol/Internet Protocol.

Tool

The definition of a single action that can be performed within a handler. This definition includes name, label, runtime
information (DLL and function), possible return codes, and parameters. Tools dragged into a handler become steps in
that handler.

Valid

A valid XML document conforms to a document structure defined by a schema or DTD (Document Type Definition).
Valid documents are well-formed documents that have a DTD or schema applied to them.

Vocabulary

A vocabulary is the set of tags and attributes that are used in an XML document.

Web Service

A web service is a method that can be invoked across the Internet. A web service can perform virtually any data
processing activity, ranging from simple information lookups to complicated business transactions. SOAP is
frequently employed to invoke web services.

Well-Formed

Well-formed documents follow the rules of XML.

WSDL

Web Services Description Language—an XML-based language that defines the functionality offered by a web service
and how to access it. WSDL makes it possible to describe services on CIC so that a worldwide audience can find and
use them. WSDL describes a service, the parameters required to invoke it, and the location of the endpoint where the
service can be accessed.

XML

Extensible Markup Language.XML provides a structured way to define data in plain text format, so that data can be
exchanged between computers.

XSL/XSLT

Extensible Style Language (XSL) is a specification used to transform XML documents into HTML. XSL Transformation
(XSLT) provides similar functionality that transforms XML data into a different XML structure.

Revisions

This topic summarizes changes made to this publication.

CIC 2017 R4

Made minor formatting improvements to this document.

CIC 2016 R1

Updated documentation with new copyright statement.

IC 4.0 Service Updates 1-4

No changes.

IC 4.0 GA

This API is mature and unchanged from IC 3.x editions. The documentation was revised for updates to copyrights and
trademarks, for help files renamed in IC 4.0, and to update the appearance of topics. There were no changes to the
SOAP Notifier COM API, except for its install. Please install SOAP Notifier COM Components using an IC 4.0 GA DVD.
Do not use an IC 3.x DVD.

Glossary

C
COM: Microsoft's Component Object Model. The COM specification helps developers create component software

that is compatible with a variety of languages, including C, ADA, Delphi, Java, and Visual Basic.

D
Denial of Service Attack: Denial of Service (DoS) attacks are attempts to overload a networked computer system so

that it crashes, disconnects from the network, or becomes so overloaded that it cannot respond to legitimate
requests.

DTD: Document Type Definition. A DTD defines the XML tags that can be used in an XML document, the order in
which tags may appear, and limited information about data types. A DTD can be part of an XML document
or can be referenced as an external file. The validating XML parser compares the DTD to the XML document
and flags any errors. DTDs have been deprecated in favor of XML Schemas.

H
Handler: A program built in Interaction Designer that performs some action or actions in response to the occurrence

of some event. A handler is a collection of steps organized and linked to form a logical flow of actions and
decisions. Handlers are similar in structure to a detailed flowchart. Handlers can start other handlers called
subroutines. A handler contains only one initiator step which identifies the type of event that will start the
handler.

HRESULT Codes: All COM functions and interface methods return a value of the type HRESULT, which stands for
'result handle'. HRESULT returns success, warning, and error values. HRESULTs are 32-bit values with several
fields encoded in the value. In Visual Basic, a zero result indicates success and a non-zero result indicates
failure. Common HRESULT values are:

HTML: Hypertext Markup Language (HTML) is the markup language used to create World Wide Web pages.

I
IC Module: One of the many applications that make up the IC server. These applications have names like manager,

server, and services. For example, Queue Manager, Fax Server, and Directory Services are all IC modules.

IDispatch Interface: The IDispatch interface provides a late-bound mechanism that can be used to access
information about the methods or properties of an object.

Initiator: The first step in a handler that waits for a specific type of event to occur. When that event occurs, the
Interaction Processor starts an instance of any handler whose initiator is configured for that event. An
initiator is a required step that starts a handler. There can be only one Initiator in a handler. Initiator names
describe the kind of event used to start a handler. Initiators can pass information from the event into
variables that can be used within a handler. Subroutine initiators are not configured to watch for an event.
Rather, they start when called from another handler.

Interaction Center (IC): The Interaction Center Platform™ is a powerful platform for implementing comprehensive
interaction management covering not only calls and faxes but also e-mail messages, Internet text chats, Web
callback requests, and voice over Net calls. Using the Interaction Center Platform, enterprises, contact
centers, and service providers can centralize the processing of all customer interactions and provide a new
level of service and consistency.

Interaction Designer: The IC graphical application development tool for creating, debugging, editing, and managing
handlers and subroutines.

Interaction Processor (IP): Interaction Processor is the event processing subsystem of the Interaction Center that
starts instances of handlers when an event occurs.

IUnknown Interface: Every COM component implements an internal interface named IUnknown. Client applications
can use the IUnknown interface to retrieve pointers to the other interfaces supported by the component.

M
Method: A method is a software subroutine that performs some type of data processing on an object in a computer

system. Methods are sometimes called functions. Data can be passed when methods are called to perform
some kind of work. For example, you might call a method named GetStockPrice and pass it a stock symbol
to receive the current stock price as the return value.

Microsoft SOAP Toolkit: Microsoft's SOAP Toolkit makes it possible for programmers to invoke a web service as
easily as invoking a method on an object. The Microsoft SOAP Toolkit reads in an WSDL file, and dynamically
generates COM interfaces for operations described in the file. It packages method parameters in accordance
with WSDL service descriptions.

N
Namespace: Since XML allows tags and attributes to be defined as needed, name collisions occur when the same

name is assigned to a tag or an attribute, in different databases. For example, a teacher might define an
element named "Grade" to represent a student's score. In the context of an agricultural operation, "Grade"
could have a different meaning, as in "Grade A" eggs. Namespaces resolve collision issues by associating
XML attribute and element names with a specific context, or "namespace". A namespace is an identifier that
helps computer programs determine whether identically named elements refer to the same type of data.
Using namespaces, a program can determine that a data element named "Grade" in the "Schoolwork"
namespace is different from an element called "Grade" in the "EggQuality" namespace.

Notifier: The IC module that acts as a communication center for all other modules. Notifier listens for events
generated by other modules and notifies other interested modules that the event has occurred. Notifier uses
a publish-and-subscribe paradigm.

P
Package: A SOAP package contains information needed to invoke a web service.

Payload: A payload contains data in XML format that is passed to or from a function. Request payloads contain
everything needed to execute a function, including data and arguments passed as parameters. Response
payloads contain the values that are returned from a function.

Processing Instruction: Processing instructions are read by application-level code (such as parsers) and are used to
communicate information without changing the content of an XML document. For example, <?xml
version="1.0"?> is a processing instruction that indicates that a document conforms to XML 1.0
specifications. Processing instructions use <?target declaration ?> notation; where target is the name of the
application that should process the instruction, and declaration is an instruction or identifier that is
meaningful to the application. In the above example, XML is a reserved target that identifies XML parsers.

Protocol: A protocol is a set of rules that one computer uses to communicate with another.

S

Schema: XML Schema are the successor to DTDs for XML. XML schemas describe method calls, and can recognize
and enforce data-types, inheritance, and presentation rules. A schema can be part of an XML document or
can be referenced as an external file.

SOAP: Simple Object Access Protocol. SOAP is an XML-based protocol that requests or receives information from
peer computers in a decentralized, distributed network. SOAP defines the minimal set of conventions that
are needed to invoke code using XML and HTTP. SOAP is used to invoke methods on servers, services,
components and objects in another computer. SOAP specifies the XML vocabulary needed to specify
method parameters, return values, and exceptions.

T
TCP/IP: Transmission Control Protocol/Internet Protocol.

Tool: The definition of a single action that can be performed within a handler. This definition includes name, label,
runtime information (DLL and function), possible return codes, and parameters. Tools dragged into a handler
become steps in that handler.

V
Valid: A valid XML document conforms to a document structure defined by a schema or DTD (Document Type

Definition). Valid documents are well-formed documents that have a DTD or schema applied to them.

Vocabulary: A vocabulary is the set of tags and attributes that are used in an XML document.

W
Web Service: A web service is a method that can be invoked across the Internet. A web service can perform virtually

any data processing activity, ranging from simple information lookups to complicated business transactions.
SOAP is frequently employed to invoke web services.

Well-Formed: Well-formed documents follow the rules of XML.

WSDL: Web Services Description Language—an XML-based language that defines the functionality offered by a web
service and how to access it. WSDL makes it possible to describe services on the IC so that a worldwide
audience can find and use them. WSDL describes a service, the parameters required to invoke it, and the
location of the endpoint where the service can be accessed.

X
XML: Extensible Markup Language. XML provides a structured way to define data in plain text format, so that data

can be exchanged between computers.

XSL/XSLT: Extensible Style Language (XSL) is a specification used to transform XML documents into HTML. XSL
Transformation (XSLT) provides similar functionality that transforms XML data into a different XML structure.

	SOAP Notifier COM API Developer's Guide
	Interfaces
	ISOAPBase64 Interface
	ISOAPBase64::DecodeToBinary Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrEncodedData
	paResult

	ISOAPBase64::DecodeToFile Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrEncodedData
	bstrFilename
	vtAppendToFile

	ISOAPBase64::DecodeToStream Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrEncodedData
	pObject

	ISOAPBase64::DecodeToString Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrEncodedData
	vtCharacterSet
	pbstrResult

	ISOAPBase64::Encode Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	vtData
	vtCharacterSet
	vtMaxLineWidth
	vtLineSeparator
	pbstrResult

	ISOAPBase64::EncodeFile Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrFilename
	vtMaxLineWidth
	vtLineSeparator
	pbstrResult

	ISOAPNotifierTransport Interface
	ISOAPNotifierTransport::Connect Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	vtServer
	vtApplicationId
	vtUserId
	vtPassword
	vtClientName
	vtFlags

	ISOAPNotifierTransport::GetProperty Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrName
	pvtResult

	ISOAPNotifierTransport::SetProperty Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrName
	vtValue

	ISOAPNotifierTransport::Connected Property
	get_Connected
	Function Prototype
	C/C++ Syntax
	Parameters
	pbResult

	ISOAPRequest Interface
	ISOAPRequest::GetProperty Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrName
	pvtResult

	ISOAPRequest::Initialize Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	pTransport

	ISOAPRequest::Reset Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters

	ISOAPRequest::Send Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	vtTimeout
	ppResult

	ISOAPRequest::SetProperty Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrName
	vtValue

	ISOAPRequest::SetSOAPPayload Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	vtSOAPPayload

	ISOAPRequest::SetTransportInfo Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	vtTransportInfo

	ISOAPRequest::ExpectResponse Property
	get_ExpectResponse
	Function Prototype
	C/C++ Syntax
	Parameters
	pbResult
	put_ExpectResponse

	Function Prototype
	C/C++ Syntax
	Parameters
	bExpectResponse

	ISOAPRequest::InitiatorEvent Property
	get_InitiatorEvent
	Function Prototype
	C/C++ Syntax
	Parameters
	pbstrResult

	put_InitiatorEvent
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrInitiatorEvent

	ISOAPRequest::SOAPAction Property
	get_SOAPAction
	Function Prototype
	C/C++ Syntax
	Parameters
	pbstrResult

	put_SOAPAction
	Function Prototype
	C/C++ Syntax
	Parameters
	bstrSOAPAction

	ISOAPRequest::Transport Property
	get_Transport
	Function Prototype
	C/C++ Syntax
	Parameters
	ppResult

	ISOAPResponse Interface
	ISOAPResponse::WritePayload Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	pObject

	ISOAPResponse::WriteTransportCtrlData Method
	Synopsis
	Function Prototype
	C/C++ Syntax
	Parameters
	pObject

	ISOAPResponse::Fault Property
	get_Fault
	Function Prototype
	C/C++ Syntax
	Parameters
	pbResult

	ISOAPResponse::Payload Property
	get_Payload
	Function Prototype
	C/C++ Syntax
	Parameters
	ppResult

	ISOAPResponse::RequestId Property
	get_RequestId
	Function Prototype
	C/C++ Syntax
	Parameters
	plResult

	ISOAPResponse::Success Property
	get_Success
	Function Prototype
	C/C++ Syntax
	Parameters
	pbResult

	ISOAPResponse::TransportCtrlData Property
	get_TransportCtrlData
	Function Prototype
	C/C++ Syntax
	Parameters
	ppResult

	SOAP Transport Information and Control
	HTTP Transport
	Request (Transport Info)
	HTTP Element Attributes
	method
	url
	pathInfo
	queryString
	remoteAddr

	Request Transport Example

	Response (Transport Control)
	Response Transport Example

	Structure of IP Notification Messages
	Request Message Structure
	Response Message Structure

	Using Microsoft SOAP Toolkit with ISoapConnector
	Using ISoapConnector (MSSOAP Notifier Connector)
	SOAP Notifier Connector Properties
	Transport
	SOAPAction
	InitiatorEvent
	PreserveInitiatorEvent
	RequestTimeout
	TransportInfo
	TransportCtrl
	ResponseObject

	Recommended Web Links
	XML
	Extensible Markup Language (XML)
	XML Tutorial
	O'Reilly XML.COM

	DTD
	DTD Table of Contents at XML101.com
	Introduction to DTD

	SOAP
	Simple Object Access Protocol (SOAP) 1.1
	SOAP Tutorial

	WSDL
	Web Services Description Language (WSDL) 1.1

	XML Namespaces
	Namespaces in XML

	Copyright and Trademark Information
	Glossary
	COM
	Denial of Service Attack
	DTD
	Handler
	HRESULT Codes
	HTML
	CIC Module
	IDispatch Interface
	Initiator
	Customer Interaction Center (CIC)
	Interaction Designer
	Interaction Processor (IP)
	IUnknown Interface
	Method
	Microsoft SOAP Toolkit
	Namespace
	Notifier
	Package
	Payload
	Processing Instruction
	Protocol
	Schema
	SOAP
	TCP/IP
	Tool
	Valid
	Vocabulary
	Web Service
	Well-Formed
	WSDL
	XML
	XSL/XSLT

	Revisions
	CIC 2017 R4
	CIC 2016 R1
	IC 4.0 Service Updates 1-4
	IC 4.0 GA

	Glossary

