
IceLib
Quick Reference Guide

 developer.genesys.com

Prerequisites

• .Net Framework 3.5
• ININ Trace Initialization Service Installed and Running – this service is installed

with any PureConnect product. The ININ Trace Viewer install is a lightweight
install that can be used to setup the service.

• I3_FEATURE_ICELIB_SDK license on the server

Design Principals
Watches
Watches are used to query the values of properties and to receive notifications when
those properties change. A StartWatch method must be called before object
properties are available and before any events are raised.

All event handlers should be added before calling StartWatching to avoid missing an
event that is raised as part of the initial watch.

 Watches do not carry over from disconnects. After a session disconnects
while there are active watches, StopWatching will need to be called to
clean up IceLib’s cache. After a new Session is connected, new watches
can then be started by calling StartWatching.

StartWatching()
StartWatchingAsync()

Starts watching the given class instance

StartWatching(items)
StartWatchingAsync(items)

Starts watching the specified items for the
given class instance

bool IsWatching() Determines whether a watch is active for
the given class instance

bool IsWatching(item) Determines whether a watch is active for
the specified item for the given class
instance

ChangeWatchedItems(items)
ChangeWatchedItemsAsync(items)

Changes the items being watched for the
given class instance. The exact method
name varies for different item types

StopWatching()
St W t hi A ()

Stops watching the given class instance

32bit/64bit
The IceLib .NET assemblies are not built as purely managed (AnyCPU) as they have
dependencies on native DLLs. This requires both 32-bit and 64-bit versions so that
each can have their respective 32-bit and 64-bit dependencies. When setting up your
project in visual studio, your project needs to have a platform target of either x86 or
x64.

Asynchronous Operations
IceLib provides synchronous (blocking) and asynchronous (non-blocking) versions of
most methods, especially those methods that make a server call.

When an asynchronous method is invoked, the work is scheduled to be performed on
a worker thread. Then, the asynchronous method returns back to the calling context
so that the initial thread can continue without blocking. These asynchronous method
flavors are frequently used when called from a UI thread so that the user experience
is not degraded.

Backwards Compatibility
IceLib versions should be behind or the same SU version as the CIC server. So if the IC
server is 4.0 SU5, the IceLib version should be 4.0 SU5 or earlier.

Connection
When creating a connection, there are a couple different options for authentication
and station types. The example below shows the different authentication and station
types, but only one of each can be used to connect.

Queues/Interactions
Interaction vs Queue Watches
Watches can be done on either a queue or a specific interaction. Queue watches are
a more general use case when you want to be aware of all interactions on a queue
and their interaction attribute changes. Interaction watches are for more specific use
cases where you need to watch a subset of attributes or track the interaction as if
flows between different queues.

An Interaction watch cannot be started on the "shared" Interaction class instance that
is contained in the InteractionChanged events. A new Interaction instance needs to
be created for the same Interaction id as the one contained in the EventArgs for the
event. This is to protect different pieces of code both handling an InteractionQueue
changed event and trying to start their own separate StartWatching watches with
conflicting sets of attributes.

developer.genesys.com

Queue Watches
Queue watches can be performed in bulk using the QueueContentsChanged event or
individually using the InteractionAdded, InteractionChanged, InteractionRemoved,
ConferenceInteractionAdded, ConferenceInteractionChanged and
ConferenceInteractionRemoved events. When registering for the individual events,
you can register for all or only the specific ones your application cares about.

When StartWatching is called on a queue, the QueueContentsChanged or
InteractionAdded event is raised to notify interactions on the queue at the time
StartWatching was called.

Using QueueContentsChanged
The QueueContentsChanged event bundles up multiple interaction and conference
interaction adds, removes, and changes. This event is preferred for workgroup and
line queues for performance. It can be used for all queues for convenience. (If there
is a QueueContentsChanged event handler, then the individual
added/removed/changed events will not be fired.)

Using Individual Events
Individual interaction and conference interaction adds/removes/changes can be
received, as an alternative to the "batching" of QueueContentsChanged. (If there is a
QueueContentsChanged event handler, then the individual added/removed/changed
events will not be fired.)

Placing a Call
When placing a call, the only required piece of information is the target queue or
number which are passed into the constructor of the CallInteractionParameters
object.

Creating a Generic Object
Generic objects can be used as representations of data in external systems. A generic
interaction is similar to a call in that it can be queued, answered, held, transferred and
disconnected like a normal call, but the key difference is that there isn’t a party on the
other end of the object.

User Status
Getting a List of User Selectable Statuses
The FilteredStatusMessageList class will provide the list of statuses that the user has
the ability to select. To get a list of all statuses configured in the system use the
StatusMessageList class.

Getting a User's Current Status

Updating a User's Status
When updating a user's status, a StatusMessageDetails object needs to be set on the
UserStatusUpdate class. The StatusMessageDetails object can be obtained from
either the FilteredStatusMessageList or StatusMessageList classes.

developer.genesys.com

Configuration
General Concepts

• If no specific properties are requested then only Id/DisplayName will be returned.
• If no rights are specified then the results will have the associated view right

applied.
• If no result limit is specified an unlimited number of results will be returned if less

than 5 properties are retrieved. If more than 5 properties are requested, the
result set will be limited to 300

• Configuration lists have a StartWatching and a StartCaching method on them.
StartWatching is used to get configuration objects and to receive events when
they are changed. StartCaching is used to only get the configuration objects, not
events will be raised when items are cached. It is not necessary to start caching
and watching at the same time.

• The changed event will not trigger for “rights” changes
• The added event doesn’t fire for newly added objects because the watch is on the

results of the filter and not the filter itself

Creating a new workgroup
To create a new configuration object, get the appropriate configuration list and use
the factory method CreateObject() to get an instance of the new object. Then set the
properties you want to configure and call Commit() to save the object.

 Retrieve Properties for a User
This example gets the first name, last name and extension for all users that the logged
in user has admin rights over. To get users that the logged in user has view rights
over, SetFilterRightsToView() could have been used instead of
SetFilterRightsToAdmin(). If all properties were needed,
SetPropertiesToRetrieveToAll() could have been used instead of listing the individual
properties.

Update the Current User
When updating an object, get the object out of the appropriate configuration list, call
PrepareForEdit() object, edit the properties you want to change and then call
Commit() to save the changes.

Delete a User
Deleting an object requires getting the object out of the appropriate configuration list
then calling Delete() on that object.

Custom Notifications
Custom notifications can be used to send messages to other IceLib application or to
fire off handlers. Custom notifications between applications cannot be targeted at a
specific user, but you can add user information in the notification data and then act
on a received message based on the values of the data.

Send Message to Handler

developer.genesys.com

Receive Message from Handler

Directories
A list of directories can be retrieved from the DirectoryConfiguration class
which can also be used to watch changes on the list. Using the
DirectoryMetadata, you can get the list of get the ContactDirectory object to
view a list of entries in the directory.

Session Watches
Session watches are used to watch for login/logout events for users, all users
on a station, or all users on a computer

Interaction Attribute Monitor
The InteractionAttributeMonitor solves the problem that you need to find
interactions across the entire system that have an interaction attribute with a
certain value. Without this class, you would have to setup queue watchers on
a number of different queues. Based on your environment that could mean
watching all line queues, or maybe most workgroup and user queues. This can
be problematic because your application needs to keep up with queues being
added an removed and you are going to get a lot of change notifications if your
attribute changes a lot, but you only care about one value.

The InteractionAttributeMonitor does have some limitations. The primary one is that for
each monitor, you can only have one attribute/value pair. An example of this is if I want to
know when a call goes disconnected I'll setup an attribute monitor on EIC_State, but
because a disconnect is really two different states (internal disconnect and external
disconnect) I would need two attribute monitors, although the event handlers for both
monitors can be the same. Depending on your needs, this might make things more difficult
if you have complex rules on what you care

about.

If you call .GetStringAttribute on the interaction from the event args, you may get stale
information. The solution is to create a new interaction using the InteractionManager and
then grab the attributes off of that interaction.

Proxy Logins
Proxy logins are done to create sessions on behalf of other users. A common use case for
this is when you have a server based integration that needs to create different sessions for
different users. In order for this to work, the account doing the proxy login needs to have
the "Proxy Logins" Access Control right configured on their IC User via the Interaction
Administrator application. This setting is in the "Miscellaneous" section of the Access Control
settings. The ProxyAutoSettings class is used to achieve this.

 ©2018 Genesys Telecommunications Laboratories, Inc.

www.genesys.com

	Connection
	Prerequisites
	Design Principals
	Watches
	32bit/64bit
	Asynchronous Operations
	Backwards Compatibility

	Queues/Interactions
	Interaction vs Queue Watches
	Queue Watches
	Using QueueContentsChanged
	Using Individual Events

	Placing a Call
	Creating a Generic Object

	User Status
	Getting a List of User Selectable Statuses
	Getting a User's Current Status
	Updating a User's Status

	Configuration
	General Concepts
	Creating a new workgroup
	 Retrieve Properties for a User
	Update the Current User
	Delete a User

	Custom Notifications
	Send Message to Handler
	Receive Message from Handler

	Directories
	Proxy Logins
	Session Watches
	Interaction Attribute Monitor

