
PureConnect®

2021 R1

Generated:

12-February-2021

Content last updated:

01-October-2020

See Change Log for summary of
changes.

VoiceXML

Technical Reference

Abstract

This document is a technical reference for the PureConnect VoiceXML
system. VoiceXML, the Voice Extensible Markup Language, is an XML-
based language used to create audio dialogs.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/pureconnect.

For copyright and trademark information, see
https://help.genesys.com/pureconnect/desktop/copyright_and_trademark_information.htm.

1

http://help.genesys.com/pureconnect
https://help.genesys.com/pureconnect/desktop/copyright_and_trademark_information.htm

2
4
4
4
4
4
4
5
5
5
5
5
5
6
7
7
7
9
9

11
11
13
14
14
14
14
15
15
15
15
15
16
16
16
16
16
17
17
17
17
18
18
19
19
19
19
19
20
20
20
21
21
23
26
26
26
28
28
28
28
29

Table of Contents
Table of Contents
Introduction to VoiceXML

Other VoiceXML Documentation
PureConnect Installation and Configuration Guide
VoiceXML Installation and Configuration Guide
CIC VoiceXML Integration with Nuance Dialog Modules Version 5.2
CIC VoiceXML Integration with Nuance Dialog Modules Version 6.1

Introduction to VoiceXML
Other VoiceXML Documentation

PureConnect Installation and Configuration Guide
VoiceXML Installation and Configuration Guide
CIC VoiceXML Integration with Nuance Dialog Modules Version 5.2
CIC VoiceXML Integration with Nuance Dialog Modules Version 6.1

VoiceXML Architecture
1xN Architecture

Sizing
Switchover Environment

Handlers and VoiceXML Tools
VoiceXML Initiate
VoiceXML Async Initiate
VoiceXML Initiate Document
VoiceXML Async Initiate Document
VoiceXML Handler Tools Logging/Tracing

ININ Tracing
System event log

VoiceXML Async Cancel
VoiceXML Host Server

Load balancing
Logging/tracing

ININ tracing
System event log

VoiceXML Host Server Notifier messages
Serviced Notifier messages
Utilized Notifier messages

Determining connected VoiceXML Interpreter Servers
License management

VoiceXML Interpreter Server
VoiceXML Interpreter Server Configuration

Windows Registry
Configuration file
Optional parameters
I3runvxml.cfg file
I3defaults.xml file

VoiceXML Interpreter Server Logging/Tracing
ININ tracing
BladewareVXML tracing
System event log

VoiceXML Interpreter Server Notifier Messages
Serviced Notifier messages
Utilized Notifier messages

VoiceXML Interpreter Server Web Configuration Interface
Accessing the Web Configuration interface
Configuring the VoiceXML Interpreter Server

Managing a VoiceXML Interpreter Server
Stopping VoiceXML Interpreter Server
Starting VoiceXML Interpreter Server

VoiceXML Data Security
VoiceXML Interpreter Logging

Prompt-related traces
Recognition-related traces
Result-related traces

2

29
29
29
29
30
30
30
31
31
35
35
35
35
35
36
37
38
38
38
40
40
40
41
41
41
41
43
44
44
44
46

BladewareVXML diagnostic traces
<log> element traces

VoiceXML Interpreter's Use of Secure Sessions
VoiceXML Host Server Logging
IP Logging
Enable Secure Input in Interaction Administrator
Using the com.inin.securedata property

Usage considerations
Example

VoiceXML Example Pack
Prerequisites
Obtaining the Example Pack
Running a VoiceXML Script

Creating a handler
Modifying the custom subroutine handler
Publish the handler
Set up Interaction Attendant
Test the handler
Experimenting with other scripts

General VoiceXML Considerations
Session variables
ININ-specific errors

<log> messages
Passing data between VoiceXML and Handlers

Input parameters
Output parameters

Using VoiceXML without ASR
File-based Grammar Types
Supported VXML Data Elements

JSON Data Elements
Change Log

3

Introduction to VoiceXML
The VoiceXML Technical Reference provides information about the Genesys PureConnect VoiceXML system.

VoiceXML, the Voice Extensible Markup Language, is an XML-based language used to create audio dialogs. These audio dialogs
feature synthesized speech (TTS) or digitized audio (pre-recorded audio) to prompt the user, and they accept spoken words or
DTMF key input. The VoiceXML application - or script - contains the logic that controls the flow of the dialog, and it's the script that
prompts the caller, accepts the caller's input, and determines the next step for the caller.

The Genesys VoiceXML Interpreter uses Commetrex’s BladewareVXML library which is written to the VoiceXML 2.1 specification
published by the World Wide Web Consortium (W3C).

For the latest VoiceXML 2.0 specification (dated 16 March 2004 as of this writing), see http://www.w3.org/TR/voicexml20/.

For the latest VoiceXML 2.1 specification (an addendum to the VoiceXML 2.0 specification, dated 19 June 2007 as of this writing),
see http://www.w3.org/TR/voicexml21/.

Other VoiceXML Documentation
The following documentation provides more information about Genesys’s VoiceXML system.

PureConnect Installation and Configuration Guide

This document assists you in installing and configuring Interaction Center.

VoiceXML Installation and Configuration Guide

This document assists you in installing and configuring the IC VoiceXML Interpreter Server.

CIC VoiceXML Integration with Nuance Dialog Modules Version 5.2

This document describes updates required to allow Nuance Dialog Modules version 5.2 to work with the IC VoiceXML Interpreter
Server.

CIC VoiceXML Integration with Nuance Dialog Modules Version 6.1

This document describes updates required to allow Nuance Dialog Modules version 6.1 to work with the IC VoiceXML Interpreter
Server.

These documents are available in the Documentation Library on your CIC system. In addition, the latest versions of these
documents can be accessed from the PureConnect Documentation Library at http://help.genesys.com.

4

http://www.w3.org/TR/voicexml20/
http://www.w3.org/TR/voicexml21/
https://help.genesys.com/pureconnect/mergedProjects/wh_tr/desktop/pdfs/installation_configuration_guide.pdf
https://help.genesys.com/cic/mergedProjects/wh_tr/mergedProjects/wh_tr_voicexml_icg/desktop/index.htm
https://help.genesys.com/cic/mergedProjects/wh_tr/mergedProjects/wh_tr_voicexml_nuance52/desktop/index.htm
https://help.genesys.com/cic/mergedProjects/wh_tr/mergedProjects/wh_tr_voicexml_nuance61/desktop/index.htm
http://help.genesys.com

Introduction to VoiceXML
The VoiceXML Technical Reference provides information about the Genesys PureConnect VoiceXML system.

VoiceXML, the Voice Extensible Markup Language, is an XML-based language used to create audio dialogs. These audio dialogs
feature synthesized speech (TTS) or digitized audio (pre-recorded audio) to prompt the user, and they accept spoken words or
DTMF key input. The VoiceXML application - or script - contains the logic that controls the flow of the dialog, and it's the script that
prompts the caller, accepts the caller's input, and determines the next step for the caller.

The Genesys VoiceXML Interpreter uses Commetrex’s BladewareVXML library which is written to the VoiceXML 2.1 specification
published by the World Wide Web Consortium (W3C).

For the latest VoiceXML 2.0 specification (dated 16 March 2004 as of this writing), see http://www.w3.org/TR/voicexml20/.

For the latest VoiceXML 2.1 specification (an addendum to the VoiceXML 2.0 specification, dated 19 June 2007 as of this writing),
see http://www.w3.org/TR/voicexml21/.

Other VoiceXML Documentation
The following documentation provides more information about Genesys’s VoiceXML system.

PureConnect Installation and Configuration Guide

This document assists you in installing and configuring Interaction Center.

VoiceXML Installation and Configuration Guide

This document assists you in installing and configuring the IC VoiceXML Interpreter Server.

CIC VoiceXML Integration with Nuance Dialog Modules Version 5.2

This document describes updates required to allow Nuance Dialog Modules version 5.2 to work with the IC VoiceXML Interpreter
Server.

CIC VoiceXML Integration with Nuance Dialog Modules Version 6.1

This document describes updates required to allow Nuance Dialog Modules version 6.1 to work with the IC VoiceXML Interpreter
Server.

These documents are available in the Documentation Library on your CIC system. In addition, the latest versions of these
documents can be accessed from the PureConnect Documentation Library at http://help.genesys.com.

5

http://www.w3.org/TR/voicexml20/
http://www.w3.org/TR/voicexml21/
https://help.genesys.com/pureconnect/mergedProjects/wh_tr/desktop/pdfs/installation_configuration_guide.pdf
https://help.genesys.com/cic/mergedProjects/wh_tr/mergedProjects/wh_tr_voicexml_icg/desktop/index.htm
https://help.genesys.com/cic/mergedProjects/wh_tr/mergedProjects/wh_tr_voicexml_nuance52/desktop/index.htm
https://help.genesys.com/cic/mergedProjects/wh_tr/mergedProjects/wh_tr_voicexml_nuance61/desktop/index.htm
http://help.genesys.com

VoiceXML Architecture
CIC's VoiceXML architecture consists of two main components: A VoiceXML Host Server and a VoiceXML Interpreter Server.

VoiceXML
Component

Description

Handler
Tools

The VoiceXML Handler Tools are the means to direct a call to use the VoiceXML Interpreter.

Host
Server

The VoiceXML Host Server manages all of the VoiceXML sessions, in addition to the resources that the VoiceXML
Interpreters need while interacting with CIC.

Interpreter
Server

The VoiceXML Interpreter Server interprets the VoiceXML document and uses CIC’s capabilities to perform the
actions described in that VoiceXML document.The Interpreter can access grammar files, prompt files, and
VoiceXML script files from local disc, network disc, or web server. The Interpreter works with the Telephony
Services (TS) subsystem to provide telephony capabilities, and with the Voice Recognition (Reco) subsystem to
provide voice recognition capabilities.

For more information about these components, see the following:
Handlers and VoiceXML Tools
VoiceXML Host Server
VoiceXML Interpreter Server

6

1xN Architecture
The PureConnect VoiceXML feature consists of two main components:

VoiceXML Host Server (which runs on the CIC Server)
VoiceXML Interpreter Server(s)

Each VoiceXML Interpreter Server can only be connected to one CIC server at a time, but more than one VoiceXML Interpreter
Server can be associated with any given CIC server. As more traffic is routed through the VoiceXML Interpreters, more VoiceXML
Interpreters can be brought online and used. Bringing more Interpreters online does not automatically increase the number of
VoiceXML licenses in use. In fact, the number of licenses in use is independent of the number of VoiceXML Interpreters in use.
Instead, bringing more interpreters online just brings more processing power to bear in servicing VoiceXML document requests.

Assume that each server can support up to 500 sessions. Genesys recommends N+1 VoiceXML servers.

Sizing

7

Switchover Environment
Because a VoiceXML Interpreter can be set up to communicate with a maximum of only one CIC server at a time, using VoiceXML
in a switchover environment requires special configuration. Each VoiceXML system must be duplicated for each CIC server in a
switchover pair. If the user VoiceXML traffic merits having two VoiceXML Interpreters connected to the primary CIC Server, then
two VoiceXML Interpreters must be configured to work with the backup CIC server.

8

Handlers and VoiceXML Tools
Handlers process incoming calls and decide whether a call goes through a VoiceXML application. If a handler decides an incoming
call must go through a VoiceXML application, it initiates a tool that transfers the call to the VoiceXML subsystem. At this point, a
VoiceXML session is then activated and the session activation tool specifies the URL of the VoiceXML document and which dialog
to start. The VoiceXML Interpreter then attempts to load and parse the document, and if it is successful, the Interpreter takes
ownership of the call.

A handler activates a VoiceXML session using one of the four tools available from the Interaction Designer Tools palette. This
palette is on the VoiceXML page.

For more information about the VoiceXML tools, see the following:
VoiceXML Initiate
VoiceXML Async Initiate
VoiceXML Initiate Document
VoiceXML Async Initiate Document
VoiceXML Async Cancel

For information about logging and tracing, see VoiceXML Handler Tools Logging/Tracing.

VoiceXML Initiate
The VoiceXML Initiate tool sends a request to the VoiceXML subsystem to start a session with the specified interaction and the
initial VoiceXML document URL is given as an argument. This tool issues a synchronous Notifier request
(eVoiceXMLRequest_InterpretURL), and then waits for a response from the VoiceXML subsystem.

The VoiceXML Initiate tool can use the parameters shown in the following table:

Parameter Dir. Type Description

Interaction IN ID Interaction to send to VoiceXML interpreter.

Document URL IN String URL of the initial VoiceXML document.

Queued Plays
Processing

IN Integer Optional. Not used. Reserved for future use.

Argument Names IN StringLi
st

Optional. List of argument names.

Argument Values IN StringLi
st

Optional. List of argument values corresponding to the arguments named in the
‘Argument Names’ parameter.

These arguments are available in VoiceXML through ‘session.name’ or ‘name’

Force Interaction
Ownership

IN Check
box

Check box for the VoiceXML interpreter to force the interaction ownership.

Unselected: Default. The VoiceXML interpreter only acquires ownership if the handler
currently owns the interaction.

Selected: The VoiceXML interpreter always acquires the interaction ownership.

Return Value OUT String Result of the ‘expr’ expression of the <exit> element. Empty string if no return value.

Result Data OUT XMLNo
de

Element of the result data of the session. (“namelist” argument of the <exit> element)

NULL node if no result data.

Event Name OUT String VoiceXML event that caused the interpreter to exit, or reason for session initiation failure.

Empty string if the session exited through <exit> element.

Event Message OUT String Additional message text associated with the VoiceXML event (‘_message’ property).

The VoiceXML Initiate tool can take the exit paths shown in the following table:

9

Exit Description

Success VoiceXML session completed successfully and the return value and/or result data (XML node) are valid.

Disconnected The interaction disconnected during the session.

Transferred The interaction was transferred to another destination during the session through the <transfer> element.

Lost
Ownership

Some other entity has taken the ownership of the interaction away during the VoiceXML session.

Invalid
Interaction

VoiceXML interpreter does not support the interaction type.

Unhandled
Event

This exit is taken if the session quit because some event other than an error is thrown during the session and not
handled by the VoiceXML application.The Event Name output parameter contains the name of the event and Event
Message may contain more information.

Failure An error occurred. Typically an error event was thrown but not caught in the VoiceXML document.The name of the
event is returned in Event Name.If the initial document fails to load, an error.badfetch event with potentially more
decorations, such as error.badfetch.http.404, is returned.

The Event Message parameter usually contains more information about what went wrong.

10

VoiceXML Async Initiate
The VoiceXML Async Initiate tool sends a request to the VoiceXML subsystem to start a session with the specified interaction, and
the initial VoiceXML document URL is given as an argument. This tool issues an asynchronous Notifier request
(eVoiceXMLRequest_InterpretURL), and does not wait for a response from the VoiceXML subsystem.

The VoiceXML Async Initiate tool can use the parameters shown in the following table:

Parameter Dir. Type Description

Interaction IN ID Interaction to send to VoiceXML interpreter.

Document URL IN String URL of the initial VoiceXML document.

Queued Plays
Processing

IN Integer Optional. Not used. Reserved for future use.

Argument Names IN StringLi
st

Optional. List of argument names.

Argument Values IN StringLi
st

Optional. List of argument values corresponding to the arguments named in the
‘Argument Names’ parameter

These arguments are available in VoiceXML through ‘session.name’ or ‘name’.

Force Interaction
Ownership

IN Check
box

Check box for the VoiceXML interpreter to force the interaction ownership.

Unselected: Default. The VoiceXML interpreter only acquires ownership if the handler
currently owns the interaction.

Selected: The VoiceXML interpreter always acquires the interaction ownership.

Event Name OUT String VoiceXML event that caused the interpreter to exit, or reason for session initiation failure.

Event Message OUT String Additional message text associated with the VoiceXML event (‘_message’ property).

The Async Initiate tool can take the exit paths shown in the following table:

Exit Description

Success VoiceXML session completed successfully and the return value and/or result data (XML node) are valid.

Disconnected Interaction has already been disconnected before the session started.

Lost
Ownership

The VoiceXML interpreter could not obtain ownership of the interaction as another entity has already taken it
away.

Invalid
Interaction

VoiceXML interpreter does not support the interaction type.

Failure An error occurred.If the initial document fails to load, an ‘error.badfetch’ event with potentially more decorations,
such as ‘error.badfetch.http.404’, is returned.

The ‘Event Message’ parameter usually contains more information about what went wrong.

VoiceXML Initiate Document
This tool sends a request to the VoiceXML subsystem to start a session with the specified interaction, and the initial VoiceXML
document is given as an argument. This tool is most useful to interpret dynamically generated VoiceXML documents or documents
read from a database. This tool issues a synchronous Notifier request (eVoiceXMLRequest_InterpretDocument), and then waits for
a response from the VoiceXML subsystem.

The VoiceXML Initiate Document tool can use the parameters shown in the following table:

11

Parameter Dir. Type Description

Interaction IN ID Interaction to send to VoiceXML interpreter.

VoiceXML
Document

IN XMLN
ode

XML DOM node of the VoiceXML document to interpret.The argument is either the
document node or the <vxml> element.

Queued Plays
Processing

IN Integer Optional. Not used. Reserved for future use.

Argument Names IN StringL
ist

Optional. List of argument names.

Argument Values IN StringL
ist

Optional. List of argument values corresponding to the arguments named in the
‘ArgumentNames’ parameter

These arguments are available in VoiceXML through ‘session.name’ or ‘name’.

Force Interaction
Ownership

IN Check
box

Check box for the VoiceXML interpreter to force the interaction ownership.

Unselected: Default. The VoiceXML interpreter only acquires ownership if the handler
currently owns the interaction.

Selected: The VoiceXML interpreter always acquires the interaction ownership.

Return Value OUT String Result of the ‘expr’ expression of the <exit> element. Empty string if no return value.

Result Data OUT XMLN
ode

Element of the result data of the session.(“namelist” argument of the <exit> element).
NULL node if no result data.

Event Name OUT String VoiceXML event that caused the interpreter to exit or reason for session initiation failure.

Event Message OUT String Additional message text associated with the VoiceXML event (‘_message’ property).

The Initiate Document tool can take the exit paths shown in the following table:

Exit Description

Success VoiceXML session completed successfully and the return value and/or result data (XML node) are valid.

Disconnected The interaction disconnected during the session.

Transferred The interaction was transferred to another destination during the session through the <transfer> element.

Lost
Ownership

Some other entity has taken the ownership of the interaction away during the VoiceXML session.

Invalid
Interaction

VoiceXML interpreter does not support the interaction type.

Unhandled
Event

This exit is taken if the session quit because some event other than “error” is thrown during the session and not
handled by the VoiceXML application. The ‘Event Name’ output parameter contains the name of the event and
‘Event Message’ may contain more information.

Failure An error occurred.That usually means an “error” event was thrown but not caught in the VoiceXML document.The
name of the event is returned in ‘Event Name’.If the initial document fails to load, an error.badfetch event with
potentially more decorations, such as error.badfetch.http.404, is returned.

The ‘Event Message’ parameter usually contains more information about what went wrong.

12

VoiceXML Async Initiate Document
The VoiceXML Async Initiate Document tool sends a request to the VoiceXML subsystem to start a session with the specified
interaction and the initial VoiceXML document is given as an argument. This tool is most useful to interpret dynamically generated
VoiceXML documents or documents read from a database. This tool issues an asynchronous Notifier request
(eVoiceXMLRequest_InterpretDocument) and does wait for a response from the VoiceXML subsystem.

The VoiceXML Async Initiate Document tool can use the parameters shown in the following table:

Parameter Dir. Type Description

Interaction IN ID Interaction to send to VoiceXML interpreter.

VoiceXML
Document

IN XMLN
ode

XML DOM node of the VoiceXML document to interpret.The argument is either the
document node or the <vxml> element.

Queued Plays
Processing

IN Integer Optional. Not used. Reserved for future use.

Argument Names IN StringL
ist

Optional. List of argument names.

Argument Values IN StringL
ist

Optional. List of argument values corresponding to the arguments named in the
‘ArgumentNames’ parameter

These arguments are available in VoiceXML through ‘session.name’ or ‘name’.

Force Interaction
Ownership

IN Check
box

Check box for the VoiceXML interpreter to force the interaction ownership.

Unselected: Default. The VoiceXML interpreter only acquires ownership if the handler
currently owns the interaction.

Selected: The VoiceXML interpreter always acquires the interaction ownership.

Event Name OUT String VoiceXML event that caused the interpreter to exit or reason for session initiation failure.

Event Message OUT String Additional message text associated with the VoiceXML event (‘_message’ property).

The Async Initiate Document tool can take the exit paths shown in the following table:

Exit Description

Success VoiceXML session completed successfully and the return value and/or result data (XML node) are valid.

Disconnected Interaction has already been disconnected before the session started.

Lost
Ownership

Some other entity has taken the ownership of the interaction away during the VoiceXML session.

Invalid
Interaction

VoiceXML interpreter does not support the interaction type.

Failure An error occurred. If the initial document fails to load, an ‘error.badfetch’ event with potentially more decorations,
such as‘error.badfetch.http.404’, is returned.

The ‘Event Message’ parameter usually contains more information about what went wrong.

13

VoiceXML Handler Tools Logging/Tracing
The VoiceXML Handler Tools generate log and trace messages to help you to track down and troubleshoot issues.

The VoiceXML Handler Tools generate diagnostic trace messages in the ip.ininlog file located in the PureConnect logging
directory of the CIC server. These messages all have a topic of I3_VoiceXmlTools.

The VoiceXML Handler Tools can generate the following messages in the Windows System Event log on the CIC server system:

Message Category

MSG_VXML_TOOLS_STD_EXCEPTION (43500) VoiceXML Tools (IC 3.0 99 / IC 4.0 -100)

MSG_VXML_TOOLS_COM_EXCEPTION (43501) VoiceXML Tools (IC 3.0 99 / IC 4.0 -100)

MSG_VXML_TOOLS_MFC_EXCEPTION (43502) VoiceXML Tools (IC 3.0 99 / IC 4.0 -100)

MSG_VXML_TOOLS_UNKNOWN_EXCEPTION (43503) VoiceXML Tools (IC 3.0 99 / IC 4.0 -100)

MSG_VXML_TOOLS_NOTIFIER_ERROR (43504) VoiceXML Tools (IC 3.0 99 / IC 4.0 -100)

VoiceXML Async Cancel
This VoiceXML tool sends a request to the VoiceXML Interpreter to signal that play/input operations should be cancelled. The
request is asynchronous. That means the tool returns as soon as the VoiceXML cancel request has been initiated.

The VoiceXML Async Cancel tool can use the parameters shown in the following table:

Parameter Dir. Type Description

Interaction IN ID Interaction to send to VoiceXML interpreter.

Event Name OUT String VoiceXML event that caused the interpreter to exit, or reason for session initiation failure.

Event Message OUT String Additional message text associated with the VoiceXML event (‘_message’ property).

The VoiceXML Async Cancel tool can take the exit paths shown in the following table:

Exit Description

Success The VoiceXML cancel request completed successfully.

Failure An error occurred. That usually means an “error” event was thrown but not caught in the VoiceXML document.

The ‘Event Message’ parameter usually contains more information about what went wrong.

ININ Tracing

System event log

14

VoiceXML Host Server
The VoiceXML Host Server (VXMLHostSvr) is a server process that initially receives all VoiceXML interpret document requests and
forwards the requests to a VoiceXML Interpreter Server for processing. The VoiceXML Interpreter Server makes requests back to
the VoiceXML Host Server to upload resources, such as prompts and grammars, to the CIC server.

The VoiceXML Host server resides on the CIC server and performs the following tasks:
Accepts a logon from a VoiceXML Host Server and creates an Interpreter session
Stops an Interpreter session
Reserves a file name for use by the requesting VoiceXML Host Server
Uploads files from the requesting VoiceXML Host Server to the VXML Host Server's cache
Downloads files from the VXML Host Server's cache to the requesting VoiceXML Host Server
Releases files from the VXML Host Server's cache
Passes all VoiceXML interpret document requests to a VoiceXML Interpreter Server determined by a load balancing algorithm

Load balancing
The VoiceXML Host Server uses a simple form of load balancing to determine which VoiceXML Interpreter Server to use for a
specified request to interpret a document. When a request is received, the VoiceXML Host Server looks through all of the
interpreters currently accepting requests and determines how many requests each is processing. The VoiceXML Host Server then
selects the interpreter which is processing the fewest number of requests to process the document. The selection does not
account for how complicated any particular request is or for how much CPU load the interpreter is using.

Logging/tracing
The VoiceXML Host Server generates log and trace messages to help you to track down and troubleshoot issues.

The VoiceXML Host Server generates diagnostic trace messages in the “voicexml host server.ininlog” file located in the ININ
logging directory of the CIC server.

The VoiceXML Host Server can generate the following messages in the Windows System Event log of the CIC server system:

Message Category

MSG_VXML_HOST_NO AVAILABLE_VOICEXML_INTERPRETERS_ERROR
 (44703)

VoiceXML Host Server (IC 3.0 100 / IC 4.0 -101)

MSG_VXML_HOST_STARTED_INFO (43600) VoiceXML Host Server (IC 3.0 100 / IC 4.0 -101)

MSG_VXML_HOST_START_ERROR (43601) VoiceXML Host Server (IC 3.0 100 / IC 4.0 -101)

MSG_VXML_HOST_STOPPED_INFO (43602) VoiceXML Host Server (IC 3.0 100 / IC 4.0 -101)

MSG_VXML_HOST_STD_EXCEPTION (43610) VoiceXML Host Server (IC 3.0 100 / IC 4.0 -101)

MSG_VXML_HOST_MFC_EXCEPTION (43611) VoiceXML Host Server (IC 3.0 100 / IC 4.0 -101)

MSG_VXML_HOST_UNKNOWN_EXCEPTION (43612) VoiceXML Host Server (IC 3.0 100 / IC 4.0 -101)

MSG_VXML_HOST_NO_AVAILABLE_VOICEXML_LICENSES_ERROR (44615) VoiceXML Host Server (IC 3.0 100 / IC 4.0 -101)

MSG_VXML_HOST_NOTIFIER_ERROR (43613) VoiceXML Host Server (IC 20.2)

ININ tracing

System event log

15

VoiceXML Host Server Notifier messages
The VoiceXML Host Server interacts with the Notifier process of a CIC system where it both services a number of Notifier
messages and uses a number of Notifier messages.

The VoiceXML Host Server services the Notifier messages described in the following table:

Notifier Message Description

eVoiceXMLRequest_InterpreterLogin Handles a request to log in an interpreter.

eVoiceXMLRequest_InterpreterLogout Handles a request to log out an interpreter.

eVoiceXMLRequest_ExchangeStreamEndpoints Handles a request to exchange Notifier stream endpoints.

eVoiceXMLRequest_AcceptSessions Handles a request to set an interpreter as accepting sessions or as not
accepting sessions.

eVoiceXMLRequest_ReserveFileName Handles a request to reserve a file name on the local cache.

eVoiceXMLRequest_UploadFile Handles a request to upload a file name to the local cache.

eVoiceXMLRequest_ReleaseFile Handles a request to release a file from the local cache.

eVoiceXMLRequest_InterpretURL Handles a request to process the VoiceXML document at a specified URL.

eVoiceXMLRequest_InterpretDocument Handles a request to process the VoiceXML document in a specified string.

eVoiceXMLRequest_Cancel Handles a request to cancel prompt/input operations.

The VoiceXML Host Server uses the following Notifier messages:

Notifier Message Description

eVoiceXMLRequest_InitiateSessionURL Handles a request with the URL specifying the document.

eVoiceXMLRequest_InitiateSessionDocument Handles a request containing the initial VoiceXML document as (XML) data.

Determining connected VoiceXML Interpreter Servers
The only way to determine which VoiceXML Interpreter Servers are currently connected to the VoiceXML Host Server and are active
is through the ININ trace log. Look under InterpreterMgrTopic in the log viewer.

License management
In addition to these other tasks, the VoiceXML Host Server process manages the usage of VoiceXML licenses. Each running
VoiceXML session uses one VoiceXML license, no matter which VoiceXML interpreter is selected to process that session.

Serviced Notifier messages

Utilized Notifier messages

16

VoiceXML Interpreter Server
The VoiceXML Interpreter Server interprets VoiceXML documents. This server:

Accepts requests to start a session
Interprets the VoiceXML document
Starts requests to play user prompts and accept user input
Closes the session

For more information, see the following:
VoiceXML Interpreter Server Configuration
VoiceXML Interpreter Server Logging/Tracing
VoiceXML Interpreter Server Notifier Messages
VoiceXML Interpreter Server Web Configuration Interface
Managing a VoiceXML Interpreter Server

VoiceXML Interpreter Server Configuration
The VoiceXML Interpreter Server gets its configuration parameters from a number of different sources.

The Windows Registry contains configuration values that are set when the VoiceXML Interpreter is installed.

The values shown in the following table can be found under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Interactive Intelligence\VoiceXML\vxiserver

Value Description

ConfigFile A file containing user configurable configuration information.

WebConfigLoginName The login name to use when entering the web configuration pages. The login name is not encrypted
by the install, but it is encrypted if modified via the web configuration pages.

WebConfigLoginPassword The login password to use when entering the web configuration pages. The login password is not
encrypted by the install, but it is encrypted if modified via the web configuration pages.

WebConfigServerPort The port used when entering the web configuration pages.

The configuration file (specified in the ConfigFile registry value) contains a number of configuration parameters, shown in the table
below. While you can adjust the parameters by editing the file, we recommended that you use the VoiceXML Interpreter Server Web
Configuration Interface to change these parameters.

Windows Registry

Configuration file

17

Parameter Description

cacheCleanupInterval The number of seconds the Interpreter Server waits before deleting a locally cached VXML resource.The
minimum that can be specified is 15 seconds and the maximum is 120 seconds. The default value (30
seconds) can remain unchanged.

cachepath The directory used to store cached VXML resources. The default value can remain unchanged.

recMaxTimeSecs The maximum time of a recording in seconds. This default value can remain unchanged.

recoValueSlotName The element name to use for the value slot in returned NLSML recognition results. If none is specified, the
default name is “value.”

ttsMRCP Setting this parameter to true tells the VoiceXML Interpreter that the TTS engine supports the MRCP
protocol. If the TTS engine does not support MRCP, set this parameter to false. The default setting is
false.

ttsSSML By default, this parameter is set to true since the default SAPI engine can support SSML and the MRCP
servers must support SSML. When set to true, this parameter tells the VoiceXML Interpreter that the TTS
engine supports SSML text handling. If the TTS engine does not support SSML, set this parameter to false.

vxiConfigFile Path to the VoiceXML library configuration file. The default value can remain unchanged.

There are four optional parameters, shown in the table below, that are not included in the default configuration file, but you can add
them if you discover that they are necessary.

Parameters Description

defaultGrammarMimeType This parameter can be used to specify the default grammar type to use if no type is specified for a
grammar.

ignoreGrammarFileMimeType Setting this parameter to true tells the VoiceXML Interpreter to ignore a grammar file’s MimeType
when determining a grammar file’s grammar type. If this parameter is set to false, then the
grammar file’s MimeType is used as the grammar type.

keepRecoSession When a VoiceXML session ends, VoiceXML calls RecoRelease. This means the ASR session is
immediately closed and any additional ASR will require a new session.The assumption is that no
further ASR will occur when the VoiceXML session ends, but that's not necessarily true if handlers
will perform additional ASR work, or another VoiceXML session is created for additional
processing.

Setting this parameter to true tells the VoiceXML Interpreter to keep the Recognition session
alive when a VoiceXML session ends. The Reco session will have to be released outside of the
VoiceXML Interpreter.

grammarCaching Setting this parameter to true instructs the VoiceXML interpreter to cache grammar files. Setting
the parameter to false instructs the VoiceXML interpreter to NOT cache grammar files. If this
parameter is not set, the default is true.

To add any of the optional parameters to the VoiceXML Interpreter Server, you must do so by editing the configuration file. Once
you add an optional parameter to the configuration file and restart the VoiceXML Interpreter Server, the optional parameter will be
accessible from the VoiceXML Interpreter Server Web Configuration Interface. If you must adjust an optional parameter at a later
time, we recommend that you use the VoiceXML Interpreter Server Web Configuration Interface to do so.

The I3runvxml.cfg file is a configuration file for the BladewareVXML library used by the Genesys PureConnect VoiceXML Interpreter.
We recommend leaving the settings in this file in their default state.

Some of the settings in this file include:
Cache settings

Optional parameters

I3runvxml.cfg file

18

ECMAScript settings
BladewareVXML logging settings
The location of the VoiceXML defaults XML

The I3defaults.xml file contains some VoiceXML script defaults. The default values for a number of properties are set and some
default error handlers are defined. This document is loaded before every document requested by the user for interpretation.

I3defaults.xml file

19

VoiceXML Interpreter Server Logging/Tracing
The VoiceXML Interpreter Server generates log and trace messages to help you to track down and troubleshoot issues.

The VoiceXML Interpreter Server generates diagnostic trace messages in the “voicexmlserver.ininlog” file located in the ININ
logging directory of the VoiceXML Server.

The BladewareVXML library has various status messages that it can output. These messages are routed into the ININ trace log
under the “VXILogTopic” topic. Here are the trace levels and the types of output associated with each trace level:

Trace Level Description

20 (Error) or higher Shows errors from VoiceXML.

60 (Status) or higher Shows various VoiceXML events.

80 (Notes) or higher Shows various VoiceXML "Content" messages.

90 (Verbose Notes)
or higher

Shows various VoiceXML “Diagnostic” messages, and the output from any <log> tags (which VoiceXML
treats as “Diagnostic” messages).

The VoiceXML Interpreter Server can generate the following messages in the Windows System Event log:

Message Category

MSG_VXML_HOST_STARTED_INFO (43600) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_NOTACCEPTING_INFO (44703) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_STARTED_INFO (43700) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_START_ERROR (43701) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_STOPPED_INFO (43702) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_STD_EXCEPTION (43710) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_UNKNOWN_EXCEPTION (43711) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_NOTIFIER_ERROR (43712) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_PROCESS_DOCUMENT_ERROR (43720) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_PROCESS_DOCUMENT_URL_ERROR (43721) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_PARSE_DOCUMENT_ERROR (43722) VoiceXML Host Server (IC 3.0 101 / IC 4.0 -102)

MSG_VXML_INTERP_CANCEL_PROMPT_INFO VoiceXML Host Server (IC 20.2)

MSG_VXML_INTERP_NOTACCEPTING_INFO (44703) VoiceXML Host Server (IC 20.1)

ININ tracing

BladewareVXML tracing

System event log

20

VoiceXML Interpreter Server Notifier Messages
The VoiceXML Interpreter Server interacts with the Notifier process of a CIC system and both services a number of Notifier
messages and uses a number of Notifier messages.

The VoiceXML Interpreter Server services the Notifier messages as described in the following table.

Notifier Message Description

eVoiceXMLRequest_InitiateSessionURL Handles a request to process the VoiceXML document at a specified URL.

eVoiceXMLRequest_InitiateSessionDocument Handles a request to process the VoiceXML document in a specified string.

The VoiceXML Interpreter Server uses the Notifier messages listed in the following table.

Notifier Message Description

eVoiceXMLRequest_InterpreterLogin
Handles a request by the VoiceXML Interpreter Server to log in to the VoiceXML
Host Server.

eVoiceXMLRequest_InterpreterLogout
Handles a request by the VoiceXML Interpreter Server to log out of the
VoiceXML Host Server.

eVoiceXMLRequest_ExchangeStreamEndpoints
Handles a request to exchange connection endpoints (for file transfers) between
the VoiceXML Host Server and the requesting VoiceXML Interpreter Server.

eVoiceXMLRequest_AcceptSessions
Handles a request to set an interpreter as “accepting sessions” or as “not
accepting sessions.”

eVoiceXMLRequest_ReserveFileName
Handles a request to reserve the specified file name for use by the requesting
VoiceXML Interpreter Server.

eVoiceXMLRequest_UploadFile
Handles a request to upload the specified file from the requesting VoiceXML
Interpreter Server to the VoiceXML Host Server's cache.

eCallMsg_GetInputEx
eCallMsg_CancelPlays
eCallMsg_SinglePartyRecord
eRecoAPIRequest_Initialize
eRecoAPIRequest_Release
eRecoAPIRequest_Input

VoiceXML Interpreter Server Web Configuration Interface
You can use the VoiceXML Interpreter Server Web Configuration interface to check the server's status as well as to view and
change the server's current configuration settings.

To access the VoiceXML Interpreter Server Web Configuration interface:
1. Ensure that the VoiceXML Interpreter Server is running.
2. Open your browser and access http://{servername}:Port where {servername} is the name of the system running the VoiceXML

Interpreter Server and Port is the port number specified during installation as the Web Configuration Server Port. (The default
port number is 8090.)

Serviced Notifier messages

Utilized Notifier messages

Accessing the Web Configuration interface

21

3. In the network authentication dialog box, type the User Name and Password that you specified during the VoiceXML Interpreter
Server installation. The Status page for the appropriate type of VoiceXML Interpreter server appears.

Note:
If you forget the user name or password of the VoiceXML Interpreter Server Web Configuration interface, do the
following on the VoiceXML Interpreter Server:
a. Note the value in the registry key: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Interactive

Intelligence\VoiceXML\WebConfigLoginName.
b. Clear the value in the registry key: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Interactive

Intelligence\VoiceXML\WebConfigLoginPassword.
Don't delete the registry entry; only clear its value.

c. Log on to the interface with the user name from "webConfigLoginName" and no password.
d. Reset the password to restore the security of the web interface.

About

On the About tab of the Status page, you'll find the name of the VoiceXML Interpreter Server, the file version, and the IP address of
the system you are using to access the Web Configuration interface.

Server Status

The Server Status tab of the Status page lists all the VoiceXML sessions that are running currently.

22

At any time, you can manually update the information on this screen by clicking Refresh. If you prefer, you can select the Auto-
refresh every 10s check box and the information on this page will reload every 10 seconds.

Checking Active Document Sessions

You can check the active VoiceXML document sessions by clicking the Details button to display more detailed information for a
specific interaction.
At any time, you can manually update the information on this screen by clicking Refresh. If you prefer, you can select the Auto-
refresh every 10s check box and the information on this page will reload every 10 seconds.

The Sessions Details page displays information in the following fields:

Field Description

Session ID The ID of the currently running document session.

Interaction ID The ID of the interaction between the CIC server and the VoiceXML Interpreter server.

Status The status of the connection.

Detailed Status Details of exactly what is happening in the connection.

Current Document The path to and name of the currently active document.

Created The date and time that the document became active.

You'll use the Configuration page to configure the VoiceXML Interpreter Server. To display the Configuration page, click Config.
When you do, you'll see the Configuration page, which contains three tabs: Servers, Parameters, and Administration.

Servers

On the Servers tab you'll see the CIC server to which the VoiceXML Interpreter Server is connected and can determine whether the
VoiceXML Interpreter Server is accepting VoiceXML sessions from that CIC server.

Configuring the VoiceXML Interpreter Server

23

Clicking the Server button will allow you to connect a VoiceXML Interpreter Server to an CIC server as well as bring a VoiceXML
Interpreter Server online or take it offline by changing the Accept Sessions setting.

Connecting a VoiceXML Interpreter Server to a CIC server

To connect a VoiceXML Interpreter Server to an CIC server, click the Server button. When you do, the Servers tab displays the
Configuration of Server page.

The Configuration of Server page contains the following fields:

24

Field Description

Notifier Host Enter the name of a CIC server.

Notifier User
ID

Enter the user name of the Customer Interaction Center user account that the VoiceXML Interpreter Server will
use to log on to the CIC server.

Notifier
Password

Enter the password for the user name specified above.

Accept
Sessions

This field is set to Yes by default. The Yes setting configures the VoiceXML Interpreter Server to accept
document sessions.

When you finish configuring the server, click Apply Changes.

Note: A VoiceXML Interpreter Server can only be associated with one CIC server at a time.

Taking a VoiceXML Interpreter Server Offline

To take a VoiceXML Interpreter Server offline so that it no longer accepts new document sessions, select No from the Accept
Sessions dropdown and click Apply Changes.

When you do, the VoiceXML Interpreter Server will prompt you to confirm that you want to change the status of the Accept
Sessions to No. Click OK to continue. At this point, the VoiceXML Interpreter Server will finish processing all currently running
document sessions, but will not accept new document sessions.

Bringing a VoiceXML Interpreter Server Online

To bring a VoiceXML Interpreter Server back online, so that it can accept new document sessions, select Yes from the Accept
Sessions dropdown and click Apply Changes.

Parameters

To configure the VoiceXML Interpreter Server Parameters, select the Parameters tab. Once you make changes to the parameters,
click Apply Changes.

The Parameters tab contains the following fields:

25

Parameter Description

cacheCleanupInterval The number of seconds the Interpreter Server waits before deleting a locally cached VXML resource.The
minimum that can be specified is 15 seconds and the maximum is 120 seconds. The default value (30
seconds) can remain unchanged.

cachepath The directory used to store cached VXML resources. The default value can remain unchanged.

recMaxTimeSecs The maximum time of a recording in seconds. This default value can remain unchanged.

recoValueSlotName The element name to use for the value slot in returned NLSML recognition results. If none is specified, the
default name is “value.”

ttsMRCP Setting this parameter to true tells the VoiceXML Interpreter that the TTS engine supports the MRCP
protocol. If the TTS engine does not support MRCP, set this parameter to false. The default setting is
false.

ttsSSML Setting this parameter to true tells the VoiceXML Interpreter that the TTS engine supports SSML text
handling. If the TTS engine does not support SSML, set this parameter to false. The default setting is
false.

vxiConfigFile Path to the VoiceXML library configuration file. The default value can remain unchanged.

If you add any of the available optional parameters to the configuration file and restart the VoiceXML Interpreter Server, those
optional parameters will be accessible and can be changed from the VoiceXML Interpreter Server Web Configuration Interface. For
more information, see "Optional parameters" in VoiceXML Interpreter Server Configuration.

Note: These are the same parameters that exist in the configuration file. For more information, see "Configuration file" in
VoiceXML Interpreter Server Configuration.

Administration

You can use the controls on the Administration tab to change your login credentials and control external access.

To change your login credentials, you must first enter your old user name and password. Then, enter a new username and new
password twice. To complete the operation, click Apply.

To change how you access the Web Configuration Interface, you'll use the control in the HTTP/HTTPS Server panel.
If you want to be able to access Web Configuration Interface from a web browser running on any workstation on your network,
make sure that the setting status shows

External access is currently enabled.
If you only want to be able to access the Web Configuration Interface from a web browser running on the VoiceXML Interpreter
Server, make sure that the setting status shows

External access is currently disabled.
The label of the button in the HTTP/HTTPS Server panel will toggle between Enable and Disable depending upon the status of
the setting.

Managing a VoiceXML Interpreter Server
The VoiceXML Interpreter Server is installed as a service. As such, you must use the Services tool to stop and start the VoiceXML
Interpreter Server.

Before stopping the VoiceXML Interpreter Server service, you will need to take the server offline as described in "Configuring the
VoiceXML Interpreter Server" in VoiceXML Interpreter Server Web Configuration Interface. The reason that you need to do this first
is to ensure that that all active VoiceXML sessions finish processing before the service stops.

To stop the VoiceXML Interpreter Server in the Services tool, select the ININ VoiceXML Server service in the list of services and
click the Stop Service icon on the toolbar.

Stopping VoiceXML Interpreter Server

26

Note: If you stop the VoiceXML Interpreter Server service before taking the server offline and documents are still being
processed, the interpreter waits for a maximum of 5 minutes for the processing to finish. At the end of the 5 minutes, any
running document sessions are forcibly closed, which could cause problems.

To start the VoiceXML Interpreter Server in the Services tool, select the ININ VoiceXML Server service in the list of services and
click the Start Service icon on the toolbar.

Starting VoiceXML Interpreter Server

27

VoiceXML Data Security
By default, VoiceXML 2.0/2.1 specifcation doesn't provide a methodology for differentiating between normal and sensitive data. To
add data security to Genesys PureConnect's implementation of VoiceXML, we have created a custom property named
com.inin.securedata. This new property will allow you to implement secure sessions for both recorded and logged data.

If the property is set to true, the VoiceXML interpreter will assume that it is handling sensitive data, and so recognition handling
and trace logging will be protected by obfuscating the data.
If the property is set to false (or any other value but true), then the VoiceXML interpreter will assume that it is handling normal
data.

Note: Keep in mind that for recordings to be properly secure during the input of sensitive data, you must Enable Secure Input in
Interaction Administrator.

For more information, see the following:
VoiceXML Interpreter Logging
VoiceXML Interpreter's Use of Secure Sessions
VoiceXML Host Server Logging
IP Logging
Enable Secure Input in Interaction Administrator
Using the com.inin.securedata property

VoiceXML Interpreter Logging
If the com.inin.securedata property is set to true, then the methods listed below will protect their trace log messages.

Confirmation prompts can contain sensitive data, so the majority of the traces containing prompt text are protected. The following
methods contain such trace messages:

VXIPromptImpl::Queue()
PromptResource::queueToSystemLocalCache()
SessionResourceCache::queuePromptToSession()
GlobalResourceCache::getResource()
GlobalResourceCache::handleResFromRemote()
GlobalResourceCache::readResource()
GlobalResourceCache::uploadResToxIC()
GlobalResourceCache::cleanUpResources()

Special cases

cleanUpResources()
This method can trace out prompt file names from the cache, but they are not tied to a particular VoiceXML session. Furthermore,
this method does not have access to the com.inin.securedata property, but it is not practical to completely remove these traces. As
such, these log messages are only traced when the trace level is set to Verbose or higher.

Speech recognition results can contain sensitive data, so traces containing the results from recognition requests are protected.
The following methods contain such trace messages:

VXIRecognitionImpl::RecognizeMain()
VXILogImpl::ContentWrite()

Prompt-related traces

Recognition-related traces

28

Information provided as VoiceXML document results can contain sensitive data, so traces containing such information are
protected. The following method contains such trace messages:

VXISession::translateDocResultToResults()

Special cases

VXISession::ProcessDocument(url)
VXISession::ProcessDocument(document)
These two methods are only going to trace sensitive data if the handler passes the sensitive data into the document in the input
name/value pairs.These traces are done before the VoiceXML document is actually entered, so we can't use the
com.inin.securedata property to determine how to treat this data. As such, we will trace the incoming variables at the Verbose trace
level and allow the logging trace level determine what gets logged.

BladewareVXML diagnostic messages can contain sensitive data, so traces containing such information are protected. The
following method contains such trace:
VXILogImpl::VDiagnostic()
This method will only protect information from BladewareVXML diagnostic messages with the following tagID's:

TagIDs Where they originate in BladewareVXML

3000, 3001, 3004, 3005 The .inet layer.

3500, 3501, 3502, 3503 The .cache layer.

4000 The .jsi layer.

8002 The .vxi layer.

We will make no attempt to protect data from any <log> elements, as the inclusion of sensitive data in these logs is a VoiceXML
application level decision. This includes Nuance NDM modules, which sometimes <log> sensitive information.

VoiceXML Interpreter's Use of Secure Sessions
When the com.inin.securedata property is set to True, the following methods will implement a secure session through the TSApi.
More specifically, the secure session is enabled with the TSAPI::SecureSessionStart() method and disabled with the
TSAPI::SecureSessionEnd() method. This applies to the following methods:

VXIRecognitionImpl::RecognizeMain()
VXIPromptImpl::Wait()

VoiceXML Host Server Logging
The VoiceXML Host Server, which runs on the CIC server, can trace sensitive data from several methods if the trace levels of the
InterpreterSsnTopic and VXIHostSvcJobTopic are set to Notes or higher. Since the VoiceXML Host Server cannot access the
com.inin.securedata property, the logging trace level determines what gets logged. This applies to the following methods:

InterpreterSession::interpretDocument
InterpreterSession::interpretURL()
eVoiceXMLRequest_InterpretDocument
eVoiceXMLRequest_InterpretURL

Result-related traces

BladewareVXML diagnostic traces

<log> element traces

29

IP Logging
The IP subsystem that runs on the CIC server can trace sensitive data from several methods if the trace level of the
I3_VoiceXmlTools topic is set to Notes or higher. Since the VoiceXML Host Server cannot access the com.inin.securedata
property, the logging trace level determines what gets logged. This applies to the following methods:

VoiceXmlInitiate()
VoiceXmlAsyncInitiate()
VoiceXmlInitiateDoc()
VoiceXmlAsyncInitiateDoc()

Enable Secure Input in Interaction Administrator
For recordings to be properly secure during the input of sensitive data, Secure Input needs to be enabled in Interaction
Administrator. To enable secure input:
1. In Interaction Administrator, click the server name to display the Server container.
2. In the Server container, double-click Configuration to display the Server Configuration dialog.
3. In the Server Configuration dialog, click the Telephony Parameters tab and click General if both are not already visible.
4. Scroll down the General section and select the Enable Secure Input Feature check box.
5. Click OK.

Using the com.inin.securedata property
To use the com.inin.securedata property, you will set the value to true or false using the following syntax:

<property name="com.inin.securedata" value="true"/>
If the property is set to true, the VoiceXML interpreter will assume that it is handling sensitive data, and so recognition handling
and trace logging will be protected by obfuscating the data.
If the property is set to false (or any other value but true), then the VoiceXML interpreter will assume that it is handling normal
data.

30

The com.inin.securedata property adheres to the same rules set out for all VoiceXML properties as outlined in Section 6.3 Property
Element in the VoiceXML 2.0 Specification. (http://www.w3.org/TR/voicexml20/#dml6.3)

Properties may be defined for the whole application, for the whole document at the <vxml> level, for a particular dialog at the
<form> or <menu> level, or for a particular form item. Properties apply to their parent element and all the descendants of the
parent. A property at a lower level overrides a property at a higher level. When different values for a property are specified at the
same level, the last one in document order applies. Properties specified in the application root document provide default values
for properties in every document in the application; properties specified in an individual document override property values
specified in the application root document.

When using the com.inin.securedata property, there are several subtleties that you will need to be aware of:
Any <prompt> contents that are queued in com.inin.securedata as true are not necessarily output right away. They can be
output at the next user input stage or at the end of the document. As such, if the value of com.inin.securedata changes to false
while the <prompt> contents are still in the queue and not yet output, then the contents of the prompt are not treated as
sensitive data.Trace logs should be secure, but if the call is being recorded by the CIC server, that recording won't treat the data
as sensitive.

If sensitive data is passed back to the calling handler from an <exit> element, it is important to make sure that
com.inin.securedata has a value of true when the <exit> is executed.Don't pass sensitive data in an <exit> element in a <form>
where com.inin.securedata has a value of false.

If sensitive information is handled in ECMAScript, it is important that this is done when com.inin.securedata has a value of true.

Remember that a <subdialog> runs in a separate context from the calling document and the value of the com.inin.securedata
property is not inherited from the calling document.The <subdialog> will either need to set the value of the com.inin.securedata
property itself, or inherit it from a value set in the I3defaults.xml document. This can be inconvenient for those applications that
use the Nuance NDM facilities, as they employ <subdialog> elements heavily.

In order to help you effectively use the com.inin.securedata property in your VoiceXML documents, the following example script,
which performs a simple output/input test while treating some data as secure, illustrates how the property is used.

<?xml version="1.0" encoding="UTF-8"?>
<!--
File:WhichDrink_secure.vxml
Date:07/03/2014
Author:WEB
Desc:This document does a simple output/input test whilst treating some data as secure.
Basic Steps:
- Play a text prompt
- Define an inline grammar
- Get input
- Play back the choice
-->
<vxml xmlns="http://www.w3.org/2001/vxml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/vxml
http://www.w3.org/TR/voicexml20/vxml.xsd"
version="2.0">
<var name="answer1"/>
<var name="answer2"/>

Usage considerations

Example

31

<var name="answer3"/>
<form>
<property name="com.inin.securedata" value="true"/>
<!--
We want to treat the "number", "drink" and "delight" information as sensitive data.
-->
<field name="number">
<prompt>
<audio src="http://billbairdpc4:8080/my-files/Suzanna.wav">
Alternative text for Suzanna prompt.
</audio>
Punch a two digit number.
</prompt>
<grammar src="builtin:dtmf/digits?minlength=2;maxlength=2"/>
</field>
<field name="drink">
<prompt>Would you like coffee, tea, milk, or nothing?</prompt>
<grammar version="1.0" mode="voice" root="drinklist">
<rule id="drinklist" scope="public">
<one-of>
<item>coffee</item>
<item>tea</item>
<item>milk</item>
<item>nothing</item>
</one-of>
</rule>
</grammar>
</field>
<field name="delight">
<prompt>What kind of tasty delight would you like?</prompt>
<grammar version="1.0" mode="voice" root="delightlist">
<rule id="delightlist" scope="public">
<one-of>
<item>cookies</item>
<item>crumpets</item>
<item>biscuits</item>
<item>nothing</item>
</one-of>
</rule>
</grammar>
</field>
<filled>
<prompt>You chose <value expr="number"/>, <value expr="drink"/> and <value
expr="delight"/>.</prompt>
<assign name="answer1" expr="drink"/>

32

<assign name="answer2" expr="delight"/>
<goto next="#weather"/>
</filled>
</form>
<form id="weather">
<property name="com.inin.securedata" value="false"/>
<!--
The weather information obtained in this form is not sensitive data.
Note that the <prompt> queued above ("You chose xxx and yyy.") is not actually issued until the
recognition input generated by the <form> below, and so is not treated as sensitive data.
Trace logs should be secure, but if the call is being recorded by the CIC server, then it won't
be secure.
-->
<field name="temperature">
<prompt>Is the weather hot or cold?</prompt>
<grammar version="1.0" mode="voice" root="templist">
<rule id="templist" scope="public">
<one-of>
<item>hot</item>
<item>cold</item>
</one-of>
</rule>
</grammar>
</field>
<field name="state">
<property name="com.inin.securedata" value="true"/>
<prompt>In which state do you live?</prompt>
<grammar version="1.0" mode="voice" root="statelist">
<rule id="statelist" scope="public">
<one-of>
<item>Indiana</item>
<item>Ohio</item>
</one-of>
</rule>
</grammar>
</field>
<field name="number2">
<prompt>
Punch a three digit number.
</prompt>
<grammar src="builtin:dtmf/digits?minlength=3;maxlength=3"/>
</field>
<filled>
<prompt>The weather is <value expr="temperature"/>.</prompt>
<assign name="answer3" expr="temperature"/>

33

<prompt>You entered <value expr="number2"/>.</prompt>
<goto next="#the_end"/>
</filled>
</form>
<form id="the_end">
<property name="com.inin.securedata" value="true"/>
<block>
<!--
answer1 and answer2 contain sensitive data, and since we want to pass this
information back to the handler, we must make sure that we <exit> from a
secure form.
-->
<prompt>Your answers are <value expr="answer1"/>, <value expr="answer2"/> and <value
expr="answer3"/>.</prompt>
<log>I am logging sensitive data (Suzanna): (<value expr="answer1"/> and <value
expr="answer2"/>)</log>
<exit namelist="answer1 answer2 answer3"/>
</block>
</form>
</vxml>

34

VoiceXML Example Pack
The VoiceXML Example Pack contains simple examples that illustrate different aspects of working with the IC VoiceXML
Interpreter. The ReadMe.doc file, included in the VoiceXML Example Pack, describes the example files provided in the
VoicexmlExampleFiles.zip file. The files included in the pack are illustrations of simple VoiceXML concepts and how to access
VoiceXML in the PureConnect environment.

The following information describes the basic steps to run the VoiceXML scripts provided in the VoiceXML Example Pack. More
detailed information about VoiceXML handler tools, host servers, interpreter servers, and other considerations are available in this
document.

Prerequisites
The following are the prerequisites for running the VoiceXML scripts, available in the Example Pack:

The VoiceXML feature is installed and configured, as documented in the VoiceXML Installation and Configuration Guide
The user knows Interaction Designer and has permission to publish handlers
The user has permission to run Interaction Attendant
Access to the VoiceXML Example Pack zip file, VoicexmlExampleFiles.zip

Obtaining the Example Pack
The VoiceXML Example Pack is available from the PureConnect Speech FTP site at:

http://www3.inin.com/Products/ININSpeech/

This site requires a user name and password. To obtain these credentials, contact your Genesys partner or Genesys Customer
Care. When you have logged on to the site, download the following file to your computer:

VoicexmlExampleFiles.zip

When you have downloaded the VoiceXML Example Pack, extract the contents of the file into a new folder. For example, you could
extract the files into the C:\VoiceXMLDocs folder

Running a VoiceXML Script
The steps to run VoiceXML scripts included in the VoiceXML Example Pack are:

Create a handler to access one of the VoiceXML tools
Set up Interaction Attendant to activate the handler
Call to access your script
Experiment with different example files

To create a Handler, you'll use Interaction Designer, which accesses one of the previous tools and calls a VoiceXML script.

To create a handler
1. Start Interaction Designer
2. From the File menu, select Open, and then navigate to the folder containing the Example Pack files
3. Select the file Thor.ihd and click Open.

Notice that this handler uses a Subroutine Initiator and calls the VoiceXML Initiate toolstep
4. Publish this handler by selecting the Activate Handler check box and choosing Custom as the Subroutine category
5. To verify that the Thor subroutine was successfully created, select the Subroutines tab at the bottom of the dialog, and choose

the Custom page, as shown below, then, look for Thor in the list.

Creating a handler

35

http://www3.inin.com/Products/ININSpeech/

Next, modify the CustomSubroutineInitiatorRouter.ihd file to allow use of the Thor subroutine that was created in the previous
steps.

Modifying the custom subroutine handler

36

1. From the File menu, click Open, and then navigate to the
CustomSubroutineInitiatorRouter.ihd file, which can be
found in the CIC install path in the
\Handlers\40Handlers folder, and click Open.

Note:
Your CIC install path will be either \I3\IC or
\Program Files (x86)\Interactive
Intelligence

2. In the Selection toolstep, add a StrEqlNoCase("Thor6,"
p_sSubroutineName) statement.

3. Add a Thor subroutine toolstep into the handler.
4. Connect the StrEqlNoCase statement with the Thor

subroutine that you just added.
5. On the Outputs page, select p_bTransferred from the

Transferred drop down.

On the Inputs page, select Interaction1 from the Call ID 1
drop down and select
file://c:/VoiceXMLDocs/HelloWorld1.vxml from
Document URI. (The exact path depends on where files in the
Example Pack have been extracted)

Publish the handler

37

To access the Thor Handler, set up Interaction Attendant.
1. Start Interaction Attendant
2. From the Active Schedule, select Insert/New Operation/Run Subroutine
3. Set the Name to Subroutine Initiator – Thor6
4. Select the Digit 6 Six
5. Set the Subroutine to Thor6
6. Publish the schedule

To test the Thor Handler, make a call.
1. Dial into your main IVR (press * from your workstation)
2. At the main IVR prompt, press 6
3. The executing script plays, "Hello World"

Now that you have created a Handler to run a VoiceXML script, you can start experimenting with other VoiceXML scripts available
from the Example Pack. Or you can use your own VoiceXML scripts. Here's how to run more scripts:
1. Start Interaction Designer
2. From the File menu, click Open and then navigate to the CustomSubroutineInitiatorRouter.ihd file and click Open.
3. Edit the Thor toolstep as follows:

Set up Interaction Attendant

Test the handler

Experimenting with other scripts

38

On the Inputs page, set Document URI to file://c:/VoiceXMLDocs/XXX.vxml (the exact path depends on where files in
the Example Pack have been extracted)

4. Publish the Handler

39

General VoiceXML Considerations

Session variables
The following table lists the session variables that are supported, and from where their data is obtained:

Property Data source

session.connection.local.uri Eic_LocalTnRaw call attribute

session.connection.remote.uri Eic_RemoteTnRaw call attribute

session.connection.protocol.name Eic_ProtocolId call attribute

session.connection.protocol.version ' '

session.connection.redirect Not currently set

session.connection.aai Not currently set

session.connection.originator session.connection.remote.uri if call is incoming

session.connection.local.uri if call is outgoing

' ' if neither

session.inin.localMachineName Host computer of VoiceXML interpreter

session.inin.interpreterName VoiceXML interpreter instance on a host computer

ININ-specific errors
In addition to the "standard" errors that are specified in the VoiceXML 2.1 standard, VoiceXML Interpreter can return a number of
ININ-specific errors, which are specific to the Genesys (formerly Interactive Intelligence) PureConnect implementation.

ININ-specific errors include:
error.com.inin.lostownership
error.com.inin.processdoc
error.com.inin.initiation.session
error.com.inin.hostsvr.deserialize.vxiinterpretdocreq
error.com.inin.hostsvr.deserialize.vxiinterpreturlreq
error.com.inin.hostsvr.interpretermgr.nosessions
error.com.inin.hostsvr.interpretermgr.nullsession
error.com.inin.hostsvr.interpretermgr.sessionnotfound
error.com.inin.hostsvr.interpretermgr.loginfailed
error.com.inin.hostsvr.interpretermgr.deserialize.vxiacceptsessionsreq
error.com.inin.hostsvr.interpretermgr.deserialize.vxiloginreq
error.com.inin.hostsvr.interpretermgr.deserialize.vxilogoutreq
error.com.inin.hostsvr.interpreterssn.deserialize.vxiuploadfilereq
error.com.inin.hostsvr.interpreterssn.deserialize.vxidownloadfilereq
error.com.inin.hostsvr.interpreterssn.deserialize.vxiexchangestreamendpoints
error.com.inin.hostsvr.interpreterssn.deserialize.vxireservefilenamereq
error.com.inin.hostsvr.interpreterssn.deserialize.vxireleasefilereq
error.com.inin.hostsvr.interpreterssn.nolicense
error.com.inin.hostsvr.interpreterssn.interpreturl.vxiserver
error.com.inin.hostsvr.interpreterssn.upload.fileNotReserved
error.com.inin.hostsvr.interpreterssn.upload.streamopenfailure
error.com.inin.hostsvr.interpreterssn.upload.createfilefailure
error.com.inin.hostsvr.interpreterssn.upload.transferfailure

40

<log> messages
The output from VoiceXML <log> tags is sent to the voicexmlserver.ininlog trace log file “voicexmlserver.ininlog” under the
“VXILogTopic.” Because BladewareVXML considers these <log> messages as “Diagnostic” messages, set the trace level to 90
(Verbose Notes) or higher to see these messages in the trace log file.

Passing data between VoiceXML and Handlers
Examples of passing data between VoiceXML and handlers are available in the VoiceXML Example Pack available from the Utilities
and Downloads page at: https://my.inin.com/products/cic/Pages/Utilities-Downloads.aspx This site requires standard Genesys
credentials, the same as logging in to the Customer Care portal.

The VoiceXML handler tools have two input parameters used to pass information into a VoiceXML script:

Parameter Description

Argument Values An optional string list of argument values.

Argument Names An optional string list of argument names.

Together the arguments are taken to form a set of name/value pairs that are available to the VoiceXML script as variables of the
form “session.name” or just “name.” So, if a handler loads the following strings into the Argument Names parameter:

“Person”
“Description”
and the following strings into the Argument Values parameter:

“Suzanna”
“a beautiful young lady”
before calling the VoiceXML Initiate tool, then the following two variables are available to the designated VoiceXML script:

session.Person(or just Person)
session.Description(or just Description)
Here is an example of a VoiceXML script using these variables:

<form>
<block>
Good morning, <value expr="Person"/>
is <value expr="Description"/>.
</block>
<block>
Good afternoon, <value expr="session.Person"/>
is <value expr="session.Description"/>.
</block>
</form>
The example handler Thor.ihd and the VoiceXML script file TestVars.vxml from the VoiceXML Example Pack illustrate this scenario.

The VoiceXML handler tools have two output parameters that are used to receive information from a VoiceXML script:

Input parameters

Output parameters

41

https://extranet.inin.com/products/cic/Pages/Utilities-Downloads.aspx

Parameter Description

Return Value A string that is the result of the expr attribute of the <exit> element

Result Data An XMLNode created from the data specified in the namelist element of the <exist> element.

So if the following VoiceXML script is running:

<form>
<field name="drink">
<prompt>Would you like coffee, tea, milk, or nothing?</prompt>
<grammar type="application/srgs+xml" src="drink.grxml"/>
</field>
<filled>
<prompt>You chose <value expr="drink"/>.</prompt>
<exit expr="drink"/>
</filled>
</form>
then when the <exit> element is executed, the information in the drink variable-for example, "tea"-would be returned in the Return
Value output parameter of the calling handler tool.

The VoiceXML script file WhichDrink2a.vxml (the Beverage Test) illustrates this concept.

If the following VoiceXML script is executed:

<filled>
<prompt>You have ordered <value expr="number"/> <value expr="size"/> pizzas with <value
expr="toppings"/>.
</prompt>
<exit namelist="number size toppings"/>
</filled>
then when the <exit> element is executed, the information in the number, size, and toppings variables is returned in XMLNode form.
For example:

<ResultData>
<toppings>pepperoni</toppings>
<number>3</number>
<size>large</size>
</ResultData>
in the Result Data output parameter of the calling handler tool.

The VoiceXML script file zoran_test.vxml (the Pizza Test) illustrates this concept.

42

Using VoiceXML without ASR
If you are not using an ASR server, you can configure the VoiceXML interpreter to only accept DTMF input by changing a couple of
input mode settings in Interaction Administrator and by altering the input mode setting in your VoiceXML scripts.

To set DTMF as the input mode in Interaction Administrator:
1. On the CIC server, open Interaction Administrator.
2. In the left pane of the Interaction Administrator window, select the System Configuration\Recognition container.
3. In the right pane, under the System Configuration column, double-click Configuration.
4. When you see the Recognition Configuration dialog box, select the General tab.
5. Select dtmf from both the Input Modes Mask and Default Input Modes drop downs.

Note: These settings affect all recognition, not just recognition related to VoiceXML.

To set DTMF as the input mode in VoiceXML scripts, set the inputmodes property to "dtmf":

<property name="inputmodes" value="dtmf"/>
<prompt>
For news press 1, For weather press 2, For sports press 3.
</prompt>

43

File-based Grammar Types
The grammar type that VoiceXML tells the Reco subsystem about for a file-based grammar is determined as follows:
1. If the type is specified in the <grammar> element in the VoiceXML script, then that type is used as the grammar type.
2. If ignoreGrammarFileMimeType is false or unspecified,

a. If the file has a MimeType associated with it, that MimeType is used as the grammar type
b. If the file does NOT have a MimeType associated with it, the configured defaultGrammarMimeType is used as the grammar

type.
3. If ignoreGrammarFileMimeType is true, the configured defaultGrammarMimeType is used as the grammar type.

Note: If the Reco subsystem is familiar with the type of Voice grammar (application/srgs and application/srgs+xml), it tries to
parse them. For types that it doesn’t know, the Reco subsystem sends the grammars on to the recognition engine for parsing.

For DTMF grammars, the Reco subsystem tries to parse the grammar, and if the type is one with which it is not familiar, it
objects.It never passes DTMF grammars on to the recognition engine.

Supported VXML Data Elements
The <data> element enables a VoiceXML application to fetch or post data to a document sever without transitioning to a new
VoiceXML document. The VXML2.1 specification defines the attributes supported by the <data> element. The “enctype” attribute
represents the encoding or MIME type of the document submitted to the document server.

PureConnect supports two JSON encoding types ("enctype" attributes) to be used with the <data> element: “application/json” and
“application/json-inin”. PureConnect also supports using the PUT HTTP request method with the <data> element. The content sent
by the VoiceXML interpreter in this context is identical for the POST and PUT methods, which are described together.

The two similar but different JSON enctype data elements provide support for the VoiceXML document to have complete control of
the JSON in the body, depending on the requirements of the webservice the application is working with. The primary difference
between these two encoding types is the following:

JSON enctype Description
application/json The JSON body is constructed automatically using the ECMAScript variable names specified in namelist attribute,

along with the data in those variables. Use this for the simple case where the variable names in the script are also
valid for urlencoding and can be passed through to the webservice. If the variable names should not be passed
through, use the application/json-inin enctype.

application/json-
inin

The JSON body consists of the data from the first ECMAScript variable named in the namelist attribute (which is
assumed to be a string containing properly formatted JSON). Use this when you want to pass the data but not the
script variable names to the webservice. In this case, you must provide the data in well formed JSON format.

Content for the "application/json" enctype

When the interpreter traverses a <data> element with “application/json” encoding type, it creates a single object containing a
member for each variable, whether using the POST or PUT method. The member names are the variable names and member values
are the corresponding variable values. When the interpreter sends the POST or PUT request, the request body contains that internal
object converted to string. Note that variable names in the “namelist” attribute of the <data> element are submitted in this case to
the document server.

For example, assume a script defines the following variables:

var person1 = {
 firstName: ”Bob”,
 lastName: ”Smith”,
 age: 32
};
var location1 = {
 city: ”Indianapolis”,

JSON Data Elements

44

https://www.w3.org/TR/voicexml21/

 state: ”Indiana”
};

When the interpreter traverses the following <data> element:

<data src=”http://www.example.org” method=”post” enctype=”application/json”
namelist=”person1 location1”/>

the interpreter sends to the server located at URI “http://www.example.org” an HTTP POST request with the following body:

{
 ”person1”: {
 ”firstName”: ”Bob”,
 ”lastName”: ”Smith”,
 ”age”: 32
 },
 ”location1”: {
 ”city”: ”Indianapolis”,
 ”state”: ”Indiana”
 }
}

Content for the "application/json-inin" enctype

When the interpreter traverses a <data> element with “application/json-inin” encoding type, it sends as content of the POST or PUT
request the content of the variable specified, with a "namelist" attribute having the name of an ECMAScript variable. Note that the
name of the variable in the “namelist” attribute of the <data> element is not submitted in this case to the server.

For example, assume a script defines the following variable:

var person2 = '{ ”firstName”: ”Bob”, ”lastName”: ”Smith”, ”age”: 32}';
When the interpreter traverses the following <data> element:

<data src=”http://www.example.org” name=”response” method=”put” enctype=”application/json-
inin” namelist=”person2”/>

the interpreter sends to the server located at URI “http://www.example.org” a PUT request with the body equivalent to:

{ ”firstName”: ”Bob”, ”lastName”: ”Smith”, ”age”:32 }

45

Change Log
The following table lists the changes to the VoiceXML Technical Reference since its initial release.

Date Changes

13-August-2012 Document created-version 1.0

04-October-2012 Added descriptions of the default GrammarMimeType and ignore GrammarFileMimeType
parameters

29-January-2013 Document Version: 1.0.1 released for CIC 4.0 SU3

19-July-2013 Merged Developer's TR with Overview TR, reformatted document design, updated cross-references, edited to
conform to MMOS

05-June-2014 Updated Copyright page.
Added information about the ability to disable external accessibility to the web configuration page of a
VoiceXML server.

01-August-2014 Updated documentation to reflect changes required in the transition from version 4.0 SU# to CIC 2015 R1,
such as updates to product version numbers, system requirements, installation procedures, references to
Interactive Intelligence Product Information site URLs, and copyright and trademark information.

10-February-2015 Updated Copyright page.
Reorganized the document layout.
Added a section containing information about adding Data Security to VoiceXML scripts via the
com.inin.securedata custom property.

20-April-2015 Added an optional parameter to the VoiceXML server configuration file.
Updated Copyright and Trademarks page.
Updated the document to reflect the CIC 2015R3 version.

12-June-2015 Added optional grammarCaching parameter to the VoiceXML server configuration file.
Updated cover page to reflect new color scheme and logo. Updated copyright and trademark
information.

09-October-2015 Updated the description of the ttsSSML configuration parameter.
Updated documentation to reflect 2016 R1 Release

04-February-2016 Updated Copyright and Trademarks for 2016.
Updated the document to reflect the CIC 2016 R2 version.
Added a link to the CIC Documentation Library at Help.inin.com.

24-August-2016 Added session.inin.localMachineName and session.inin.interpreterName session variables
in "Session Variables" section.

10-May-2018 Rebranded from Interactive Intelligence to Genesys.

12-June-2019 Reorganized the content only, which included combining some topics and deleting others that just had an
introductory sentence such as, "In this section...".

25-June-2019 Added a note to VoiceXML Interpreter Server Web Configuration Interface about how to reset the password
for the VoiceXML Interpreter Server Web Configuration interface.

1-August-2019
Added a topic for Supported VXML Data Elements for new JSON enctype attribute support in data elements.
Added an opening paragraph in the Introduction to VoiceXML. Change the link in the VoiceXML Example Pack to
point to a download on the Product Information Site as the old FTP link was invalid.

12-February-2020
Added VoiceXML Async Cancel tool.

18-September-2020
Added new messages to VoiceXML Interpreter Server and VoiceXML Host Server System event log sections.
Updated architecture diagram.

01-October-2020
Added new event log messages and made minor corrections.

46

http://help.inin.com/

	Table of Contents
	Introduction to VoiceXML
	Other VoiceXML Documentation
	PureConnect Installation and Configuration Guide
	VoiceXML Installation and Configuration Guide
	CIC VoiceXML Integration with Nuance Dialog Modules Version 5.2
	CIC VoiceXML Integration with Nuance Dialog Modules Version 6.1

	Introduction to VoiceXML
	Other VoiceXML Documentation
	PureConnect Installation and Configuration Guide
	VoiceXML Installation and Configuration Guide
	CIC VoiceXML Integration with Nuance Dialog Modules Version 5.2
	CIC VoiceXML Integration with Nuance Dialog Modules Version 6.1

	VoiceXML Architecture
	1xN Architecture
	Sizing

	Switchover Environment

	Handlers and VoiceXML Tools
	VoiceXML Initiate
	VoiceXML Async Initiate
	VoiceXML Initiate Document
	VoiceXML Async Initiate Document
	VoiceXML Handler Tools Logging/Tracing
	ININ Tracing
	System event log

	VoiceXML Async Cancel

	VoiceXML Host Server
	Load balancing
	Logging/tracing
	ININ tracing
	System event log

	VoiceXML Host Server Notifier messages
	Serviced Notifier messages
	Utilized Notifier messages

	Determining connected VoiceXML Interpreter Servers
	License management

	VoiceXML Interpreter Server
	VoiceXML Interpreter Server Configuration
	Windows Registry
	Configuration file
	Optional parameters
	I3runvxml.cfg file
	I3defaults.xml file

	VoiceXML Interpreter Server Logging/Tracing
	ININ tracing
	BladewareVXML tracing
	System event log

	VoiceXML Interpreter Server Notifier Messages
	Serviced Notifier messages
	Utilized Notifier messages

	VoiceXML Interpreter Server Web Configuration Interface
	Accessing the Web Configuration interface
	About
	Server Status
	Checking Active Document Sessions

	Configuring the VoiceXML Interpreter Server
	Servers
	Connecting a VoiceXML Interpreter Server to a CIC server
	Taking a VoiceXML Interpreter Server Offline
	Bringing a VoiceXML Interpreter Server Online
	Parameters
	Administration

	Managing a VoiceXML Interpreter Server
	Stopping VoiceXML Interpreter Server
	Starting VoiceXML Interpreter Server

	VoiceXML Data Security
	VoiceXML Interpreter Logging
	Prompt-related traces
	Special cases

	Recognition-related traces
	Result-related traces
	Special cases

	BladewareVXML diagnostic traces
	<log> element traces

	VoiceXML Interpreter's Use of Secure Sessions
	VoiceXML Host Server Logging
	IP Logging
	Enable Secure Input in Interaction Administrator
	Using the com.inin.securedata property
	Usage considerations
	Example

	VoiceXML Example Pack
	Prerequisites
	Obtaining the Example Pack
	Running a VoiceXML Script
	Creating a handler
	Modifying the custom subroutine handler
	Publish the handler
	Set up Interaction Attendant
	Test the handler
	Experimenting with other scripts

	General VoiceXML Considerations
	Session variables
	ININ-specific errors

	<log> messages
	Passing data between VoiceXML and Handlers
	Input parameters
	Output parameters

	Using VoiceXML without ASR
	File-based Grammar Types
	Supported VXML Data Elements
	JSON Data Elements
	Content for the "application/json" enctype
	Content for the "application/json-inin" enctype

	Change Log

