
PureConnect®PureConnect®

2021 R32021 R3

Generated:

12-August-2021

Content last updated:

21-June-2019

See Change Log for summary of
changes.

Introduction to IceLibIntroduction to IceLib

Technical ReferenceTechnical Reference

AbstractAbstract

This document introduces the Interaction Center Extension Library
(IceLib) API. IceLib is a programming API that .NET developers can use
to create custom applications that leverage the Customer Interaction
Center. Installation and sample applications are also discussed.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/pureconnect.

For copyright and trademark information, see
https://help.genesys.com/pureconnect/desktop/copyright_and_trademark_information.htm.

1

http://help.genesys.com/pureconnect
https://help.genesys.com/pureconnect/desktop/copyright_and_trademark_information.htm

2
4
4
4
6
8
9
9

10
11
11
11
11
12
12
12
12
12
12
12
12
12
13
13
14
15
16
17
18
19
19
19
20
20
20
20
20
21
21
21
22
23
23
23
23
24
24
25
26
27
28
29
29
31
31
34
35
35
36
36
37
38

Table of ContentsTable of Contents
Table of Contents
Introduction to the IceLib API

IceLib 32-Bit and 64-Bit Support
Documentation

IceLib Overview
How the IceLib API Help is Organized

Structure of namespace sections
Structure of class topics under namespaces

IceLib Namespaces
ININ.IceLib

IceLib.Configuration
IceLib.Configuration.DataTypes
ININ.IceLib.Configuration.Efaq
ININ.IceLib.Configuration.Feedback
IceLib.Configuration.Mailbox
ININ.IceLib.Configuration.Mailbox.Utility
ININ.IceLib.Configuration.OCS
ININ.IceLib.Configuration.Optimizer
ININ.IceLib.Configuration.ProcessAutomation
ININ.IceLib.Configuration.Recorder
ININ.IceLib.Configuration.Reporting
IceLib.Configuration.Validators
ININ.IceLib.Connection
IceLib.Connection.Extensions
ININ.IceLib.Directories
IceLib.Efaq
ININ.IceLib.Interactions
ININ.IceLib.People
ININ.IceLib.People.ResponseManagement

Response Management Objects
ININ.IceLib.ProcessAutomation
IceLib.QualityManagement
ININ.IceLib.Reporting
ININ.IceLib.Reporting.Interactions
ININ.IceLib.Reporting.Interactions.Filters
ININ.IceLib.Reporting.Interactions.Details
ININ.IceLib.Statistics
ININ.IceLib.Statistics.Alerts
ININ.IceLib.Tracker
Tracker API
ININ.IceLib.UnifiedMessaging
Fax Capabilities
Voicemail Capabilities
File Access Capability
MWI Capability

Install IceLib
Applying new releases

Sample Applications
DirectoriesClient C# Example
DirExplorer C# Example
FaxSample C# Example
InteractionsTest C# Example
ConnectionExtensionsTest C# Example
Statistics C# Example
PeopleClient C# Example
TrackerAdmin C# Example
TrackerClient C# Example
VBTest VB.NET Example
AspIceLibClientDemo ASP.NET Example
Configuration Cmdlet
AutomationProcessLauncher

Change Log
2

3

Introduction to the IceLib APIIntroduction to the IceLib API
The Interaction Center Extension Library (IceLib for short) is a programming API that allows developers to create custom
applications that leverage CIC to solve business problems. IceLib is for developers who use modern .Net languages, such as C# or
VB.Net.

IceLib provides a clean architecture that applications can use to manage sessions with CIC. IceLib provides session creation and
login functions that allow applications to connect with one or more CIC servers using the login options that are available in the CIC
clients (for example, user, password, station, remote number, remote station, persistent, and audio enabled). The figure below
illustrates the tight coupling between IceLib and the Customer Interaction Center system architecture.

Note:Note:
Because of underlying connection security changes, IceLib 3.0 integrations must be upgraded to use IceLib 4.0 in order to work
with 4.0 or 201x Rx CIC servers. Conversely, IceLib integrations for CIC 4.0 or later cannot be used with 3.0 CIC servers.

IceLib 32-Bit and 64-Bit SupportIceLib 32-Bit and 64-Bit Support
The IceLib SDK has both a 32-bit and a 64-bit installation program, as well as a merge module for each. The two versions are
necessary because IceLib .NET assemblies have dependencies on native 32-bit and 64-bit DLLs. For more information, see the
IceLib API documentation topic "IceLib SDK 32-bit vs. 64-bit." IceLib 64-bit support is available inCIC 4.0 Service Update 4 and later
releases.

DocumentationDocumentation
IceLib was professionally documented by its developers. The online documentation strongly resembles Microsoft's .NET
documentation. In printable form, the IceLib documentation is over 12,000 pages. Moreover, IceLib assembly XML files provide
IntelliSense© documentation when applications are developed in Visual Studio.

4

ININ.IceLib.chm

5

IceLib OverviewIceLib Overview
IceLib interfaces with SessionManager, the CIC subsystem that brokers connections between client applications and a given CIC
server. Custom IceLib applications fully leverage SessionManager, just like internally developed CIC applications. For example,
Interaction Fax and Interaction VoiceMail both use IceLib and take advantage of its SessionManager capability. IceLib is feature-
license based, not per-seat or per-session. Client sessions require client licenses, of course.

Generally speaking, IceLib provides the means to work with Interactions, Directories, People, Interaction Tracker, and Unified
Messaging. It manages connections with the CIC server, specifies authentication and station settings, watches for connection
state-change events, and performs actions relative to the connected Session user.

IceLib gives applications the ability to monitor interactions and queues. An interaction in a given queue can be watched for attribute
changes. Applications can receive notifications when interactions are added or removed from a queue. Monitoring can be scoped
to a given interaction, or to all interactions within a queue. Chats, Emails, and conferences can be monitored, along with telephone
calls and other interaction types. In IceLib, objects and object watches contain only the data that the developer requests.

Change notification is implemented using events that follow the common Object/EventArgs pattern. This allows multiple
notification recipients to be registered. It also allows recipients granular control over which notifications they receive. Developers
should name the custom delegate for an event "FooEventHandler". Foo does not have to match the name of the event if
FooEventHandler is generally useful for multiple events in the system. FooEventHandler's first parameter should be "object sender"
and the second parameter should either be "EventArgs e" (and set to EventArgs.Empty) if no arguments are needed, or if a custom
FooEventArgs class that inherits from EventArgs (or CancelEventArgs).

IceLib follows the direction that Microsoft has taken with public APIs. It conforms with Microsoft's design guidance and best
practices for public APIs and framework development. It utilizes familiar style and naming conventions and it is based on
Microsoft's .Net 2.0 technology framework.

For example, IceLib is object-based, rather than interface-based. This reflects the direction that Microsoft and the .NET
technologies have taken to go beyond COM, in accordance with the .NET Framework Design Guidelines.

IceLib conforms with the Common Language Specification (CLS), a standard that defines naming restrictions, data types, and rules
to which assemblies must conform if they are to be used across programming languages. This means that IceLib is compatible
with C#, VB.Net, and all other .Net languages.

IceLib is a strongly typed API. Common attributes are accessible as properties, enumerations, or constants. IceLib supports
generics, events, asynchronous patterns, and nullable types. Properties are used instead of public fields. This helps make the API
future-proof, since changes can be made to a property get/set without affecting existing third-party application usage.

IceLib provides a consistent set of stable interfaces that expose Interaction Desktop feature sets to third-party applications. It
provides a stable foundation for application development. IceLib's internal consistency promotes intuitive use, and its adherence
with .Net eases understanding, reduces ramp-up time, and speeds development.

Note:Note:
Customer Interaction Center (CIC) supports two interaction management client applications: Interaction Connect and
Interaction Desktop.

This documentation uses the term CIC client to refer to either Interaction Connect or Interaction Desktop. For more information
about CIC clients, see CIC Client Comparison in the PureConnect Documentation Library.

Consistent API design promotes intuitive use by application developers. Further, it can reduce the number of bugs when correct
usage patterns have previously been learned. The ease of use improvements gained through design consistency are sometimes
termed "The Power of Sameness". This is beneficial to customers since it can reduce application development costs.

IceLib provides synchronous (blocking) and asynchronous (non-blocking) versions of most methods, especially those methods that
make a server call. This convention allows the developer the convenience of choosing which programming model to use. It also
allows him to switch back and forth between the two models where appropriate within the same application.

In IceLib, errors are reported via exceptions rather than by returning or querying error codes. Methods are designed to fail fast, by
evaluating parameters early and to throw meaningful argument exceptions. This helps developers to identify issues with code more
quickly and easily.

IceLib ships with full-featured sample applications in several languages (C#, VB.NET, ASP.NET). Each application is commented
and designed to illustrate "best practices" of a real implementation. The examples cover key topic areas, such as:

Interactions, Queues, and Voicemail (C#)
Workgroups, Users, and Statuses (VB.NET)
User Rights, Access, Status Messages, Workgroups, etc. (C#)
Directories and Statuses (ASP.NET)
Directories Metadata & Paged Views (C#)
More Directories (C#)

6

https://help.genesys.com/cic

Tracker Types Information (C#)
Tracker Queries (C#)

7

How the IceLib API Help is OrganizedHow the IceLib API Help is Organized
The IceLib API help contains an introductory section about the ININ.IceLib namespace, which is the parent namespace for all the
other namespaces, classes, and features of IceLib. The ININ.IceLib topic contains sub-topics for all the parent classes at the top
level of IceLib. The introductory section also contains:

A "What's New" page that describes the latest additions and improvements.

A "Getting Started" section that describes some of the features of the IceLib API and the API Help.

A "Concepts" section that explains some of the basic ideas needed to understand and use IceLib.

8

Structure of namespace sectionsStructure of namespace sections
Each namespace topic consists of:

An introductory section that gives an overview of the namespace, including its purpose and the general categories of classes
that it contains. This section might also include additional background information. It might also include code examples to help
you use the classes and other features more effectively.
A list of links to sub-topics, each of which gives details about a class within the namespace.
A list of links to sub-topics, each of which gives details about an enumeration within the namespace.
A list of links to sub-topics, each of which gives details about an interface within the namespace.

Structure of class topics under namespacesStructure of class topics under namespaces
Each class topic consists of:

An introductory section that gives an overview of the class, including its purpose.
Definitions of the class's syntax in different languages, such as Visual Basic, C#, C++, J#, and JScript.
Additional information needed to use the class effectively, including potential pitfalls.
The inheritance hierarchy of the class.
Information about thread safety with the class.
A link to a topic that describes members of the class.

9

IceLib NamespacesIceLib Namespaces
This API is encapsulated in a single root namespace (IceLib), located directly off of the ININ namespace. IceLib's 30 namespaces
are arranged in a flat hierarchy that logically corresponds to high-level concepts and functionality. This arrangement simplifies
discovery during development, makes IceLib easier for developers to use, and reflects the fact that IceLib is product-independent.
The namespaces are:

ININ.IceLib

IceLib.Configuration

IceLib.Configuration.DataTypes

ININ.IceLib.Configuration.Efaq

ININ.IceLib.Configuration.Feedback

IceLib.Configuration.Mailbox

ININ.IceLib.Configuration.Mailbox.Utility

ININ.IceLib.Configuration.OCS

ININ.IceLib.Configuration.Optimizer

ININ.IceLib.Configuration.ProcessAutomation

ININ.IceLib.Configuration.Recorder

ININ.IceLib.Configuration.Reporting

IceLib.Configuration.Validators

ININ.IceLib.Connection

IceLib.Connection.Extensions

ININ.IceLib.Directories

IceLib.Efaq

ININ.IceLib.Interactions

ININ.IceLib.People

ININ.IceLib.People.ResponseManagement

ININ.IceLib.ProcessAutomation

IceLib.QualityManagement

ININ.IceLib.Reporting

ININ.IceLib.Reporting.Interactions

ININ.IceLib.Reporting.Interactions.Details

ININ.IceLib.Reporting.Interactions.Filters

ININ.IceLib.Statistics

ININ.IceLib.Statistics.Alerts

ININ.IceLib.Tracker

Tracker API

ININ.IceLib.UnifiedMessaging

10

ININ.IceLibININ.IceLib
The ININ.IceLib namespace contains fundamental classes and base classes for creating Interaction Center based applications.
These include commonly-used value and reference data types, events and event handlers, interfaces, attributes, and processing
exceptions.

This namespace also facilitates exception handling. There are a number of exceptions that can be thrown throughout IceLib. These
are intended to allow custom applications to receive information about specific error conditions and be able to handle the
condition accordingly. All such exceptions inherit from ININ.IceLib.IceLibException.

The IceLib namespace also provides a Tracing class. The Tracing object supports simple tracing. Trace statements are written to
the Interactive Intelligence trace log for the running application instance. All trace statements are written to the "IceLib_Custom"
trace topic.

The ININ.IceLib.Configuration namespace contains classes for configuring a CIC server. It has rich support for the
RoleConfiguration, UserConfiguration and WorkgroupConfiguration objects, as well as basic support for other
objects such as SiteConfiguration and WrapUpCodeConfiguration.

There are a number of classes within the ININ.IceLib.ConfigurationININ.IceLib.Configuration namespace that provide support to the classes mentioned in
the preceding summary. Examples of the supporting classes are enumerations, event argument classes, and delegates used by
events within classes.

List-Based Configuration ObjectsList-Based Configuration Objects

There are a number of object classes that are used to get properties for configuration objects that can have multiple instances on
the server (distinguished by their ConfigurationId). These consist of ListConfigurationObject-derived classes. They are
searched, with the results being cached, using a ConfigurationList-derived class. The search is composed of a QuerySettings
instance which encapsulates a filter, a sort, the properties to be retrieved, the rights to be applied, and the result count limit. An
example of this type of configuration object list is UserConfigurationList which is used to obtain UserConfiguration
instances.

Some of these list-based configuration objects also support being edited, created, or deleted. These consist of
EditableListConfigurationObject-derived classes and the EditableConfigurationList-derived classes used to search
and cache them. The EditableConfigurationList-derived class has support for create and the
EditableListConfigurationObject-derived class has support for edit and delete.

Container-Based Configuration ObjectsContainer-Based Configuration Objects

There are a number of object classes that are used to get properties for configuration objects that can only have a single instance
on the server. These consist of ContainerConfigurationObject-derived classes. They are queried, with the results being
cached, using a ConfigurationContainer-derived class. The query is comprised of a which properties are to be retrieved.

Some of these container-based configuration objects also support being edited (but not created or deleted). These consist of
EditableContainerConfigurationObject-derived classes. The EditableListConfigurationObject-derived class has
support for edit. An example of this type of configuration object list is SystemConfigurationContainer which is used to
obtain a SystemConfiguration instance.

The ININ.IceLib.Configuration.DataTypes namespace contains classes that provide support to the classes in the
ININ.IceLib.Configuration namespace. Examples of the supporting classes are enumerations, event argument classes, and
delegates used by events within classes.

The ININ.IceLib.Configuration.EFaq namespace contains classes that provide support for EFaq configuration.

IceLib.ConfigurationIceLib.Configuration

IceLib.Configuration.DataTypesIceLib.Configuration.DataTypes

ININ.IceLib.Configuration.EfaqININ.IceLib.Configuration.Efaq

11

The ININ.IceLib.Configuration.Feedback namespace contains classes that provide support for feedback configuration.

The ININ.IceLib.Configuration.Mailbox namespace contains classes that provide support to the classes in the
ININ.IceLib.Configuration namespace. Examples of the supporting classes are enumerations, event argument classes, and
delegates used by events within classes.

The ININ.IceLib.Configuration.Mailbox.Utility namespace contains classes to define, retrieve, set, and test IMAP servers, as well as
to define and test various aspects of e-mail sending and delivery.

The ININ.IceLib.Configuration.OCS namespace contains classes that provide support for office communication server
configuration.

The ININ.IceLib.Configuration.Optimizer namespace contains classes that provide support for optimizer configuration.

The ININ.IceLib.Configuration.ProcessAutomation namespace contains classes that provide support for process
automation configuration.

The ININ.IceLib.Configuration.Recorder namespace contains classes that provide support for recorder configuration.

The ININ.IceLib.Configuration.Reporting namespace contains classes that provide support for report configuration.

The ININ.IceLib.Configuration.Validators namespace contains classes that provide support to the classes in the
ININ.IceLib.Configuration namespace. Examples of the supporting classes are enumerations, event argument classes, and
delegates used by events within classes.

ININ.IceLib.Configuration.FeedbackININ.IceLib.Configuration.Feedback

IceLib.Configuration.MailboxIceLib.Configuration.Mailbox

ININ.IceLib.Configuration.Mailbox.UtilityININ.IceLib.Configuration.Mailbox.Utility

ININ.IceLib.Configuration.OCSININ.IceLib.Configuration.OCS

ININ.IceLib.Configuration.OptimizerININ.IceLib.Configuration.Optimizer

ININ.IceLib.Configuration.ProcessAutomationININ.IceLib.Configuration.ProcessAutomation

ININ.IceLib.Configuration.RecorderININ.IceLib.Configuration.Recorder

ININ.IceLib.Configuration.ReportingININ.IceLib.Configuration.Reporting

IceLib.Configuration.ValidatorsIceLib.Configuration.Validators

12

The Connection namespace represents the functionality of creating a connection session with the server. Events are also sent for
connection state changes and station settings changes. In addition, there is support to change the connected station and support
to disconnect.

The following Authentication types are supported:
Notifier (CIC username, password)
Windows (username, NTLM (LAN manager) and/or Kerberos authentication)
Restricted (used to obtain software updates)

The supported Station types are:
Workstation (station name)
Remote Station (station name, remote number, persistent)
Remote Number (remote number, persistent)
Stationless

The supported Host settings are:
Host (BridgeHost machine name)
Port (BridgeHost port)

The Connection namespace also provides reconnect functionality:
Manually invoked reconnect attempts
Optional auto-reconnect functionality
Events that describe the state of auto-reconnect attempts (for user feedback).

The ININ.IceLib.Connection.Extensions namespace contains classes to support advanced connection-related features.

This includes retrieving ServerParameters, setting the user's password, persisting custom settings to the CIC server, sending or
receiving a CustomNotification, and watching for creation of other Sessions.

ININ.IceLib.Data.TransactionBuilderININ.IceLib.Data.TransactionBuilder

The ININ.IceLib.Data.TransactionBuilder namespace contains classes that client applications can use to execute transactions
remotely through Transaction Server. This namespace contains supporting classes for executing transactions remotely through the
xIC subsystem TransactionServer.

Application developers using the Tracker API will most likely not use the TransactionBuilder API directly. Classes and methods in
the ININ.IceLib.Tracker namespace use classes in the ININ.IceLib.Data.TransactionBuilder namespace as a middle tier. This
provides the communication layer that is used to execute remote stored procedures via TransactionServer.

The primary class used is the TransactionClient class. It represents the functionality of Transaction Builder, which is a
programming interface that allows the execution of transactions using C# "code-genned" code.

The TransactionClient class:
provides a low-level (middle tier) programming interface.
allows execution of transactions using C# "code-genned" code.
executes transactions remotely through xIC subsystem TransactionServer.

ININ.IceLib.ConnectionININ.IceLib.Connection

IceLib.Connection.ExtensionsIceLib.Connection.Extensions

13

The ININ.IceLib.Directories namespace contains classes for accessing Interaction Center contact directories. The namespace is
organized around tasks one would typically want to perform, such as:

Retrieve and manage the list of directories, and watch for changes to that list.

Get available directories.
Get directory metadata.

Retrieving and managing entries within a specific directory.

Get directory contacts.
Get contact details.
Perform paged directory views.
Create, rename, and delete speed dial directories.
Create, update, and delete contact entries.
Link contact entries to a speed dial directory.

Contact directories contain lists of people and contact information about those people. For example, the default directory for
private contacts is named IC Private Contacts, the default directory for public contacts is IC Public Contacts, and the directory
which holds all company employees is the Company Directory. Classes in this namespace support every type of directory that CIC
provides:

Customer Directory
Workgroup Directories
Group and Profile Directories
StationGroup Directories
Speed Dial Directories
General Directories implemented via the Data Manager

ININ.IceLib.Directories is composed of several application programming interfaces (APIs).

For more information, see the following:
Directories Manager
Basic Directory Support
Watched View Support

Directories ManagerDirectories Manager

The Directories Manager is the key object to access all APIs for directory support. Its role is much the same as other managers
found in IceLib such as the Interactions or People assemblies. That is to manage all resources internal to the assembly. The
manager keeps track of who is watching what resources, maintains an interal cache of data retrieved and watches for change
notifications to keep the watched objects up to date. In this assembly the Directories Manager will manage directory associated
data and the watchers subscribing to that data.

All this functionality is opaque to the IceLib client customer. However, the Directories Manager is required to access all other APIs
within this assembly for a given session.

ININ.IceLib.DirectoriesININ.IceLib.Directories

14

Basic Directory SupportBasic Directory Support

Classes in this API provide basic access to CIC directory data.

DirectoryConfigurationDirectoryConfiguration

This class gets a list of directories and their definitions (Directory Metadata) available. A directory definition, or metadata,
includes it's name, owner, access permissions, category, and schema. The category is the type of directory: Company,
Workgroup, Station Group, Speed Dial, Group and Profile and General Data Manager contact information. The schema
provides a list of available columns and their definitions. Currently there are about 37 contact related columns supported.

DirectoryMetadataDirectoryMetadata

This class represents the diretory metadata listed above.

ContactDirectoryContactDirectory

A watched object that gets and caches all rows for a specific directory. Each row is represented by one or more Contact
Entry objects. The Contact Directory will listen for notifications for any entries that have been changed, added or removed.
The IceLib client application can subscribe to listen to these changes. The Contact Directory also provides the capability of
performing client side caching of directory information, so that there is no impact on the network when a client session
restarts.

ContactEntryContactEntry

A directory entry represents one row within the directory cache. Where permitted directory entries can be modified, added or
deleted. Currently in CIC this is mostly supported in the speed dial and general contact directories.

Watched View SupportWatched View Support

The watched view provides a way to perform paging on contact data. Queries supply a start index, a count and an optional filter and
sort order. These settings scope the query to only a handful of items. Change notifications are limited to items in the view.

ContactDirectoryWatchSettingsContactDirectoryWatchSettings : This class represents settings for a directory watch that provides a filtered and sorted view of
contact entries. This view can be returned in increments or pages at a time.

This approach supports very large directories, since it limits the number of items that are returned at a time. The client application
can then make requests to change the view by advancing next or going back a page at a time. A page is roughly defined as a count
number of items. This is usually a small number, between 50 and 100. Setting this to a large number of entries would defeat the
purpose of the paged approach.

The ININ.IceLib.EFaq namespace provides classes for accessing the e-FAQ Frequently Asked Question database.

To obtain a list of e-FAQ servers and their respective FAQ Topics, use the EFaqServerList class. This class provides access to
the EFaqServer objects that correspond to the e-FAQ servers to which the user has been granted access permission. Queries can
then be issued to each server via the Query method, or the corresponding asynchronous method, on the EFaqServer object.

IceLib.EfaqIceLib.Efaq

15

The ININ.IceLib.Interactions namespace contains classes for manipulating Interaction Center interaction queues.

There are a number of classes within the ININ.IceLib.Interactions namespace that provide support to the classes
mentioned in the preceding summary. Example of the supporting classes are enumerations, event argument classes, and delegates
used by events within classes.

Queue WatchesQueue Watches

There are a number of object classes that are used to get specific attributes for the Interactions contained in a given Interaction
Queue. They are watched, meaning, that any time an attribute is changed, the internal cache of that object is kept up to date so
anytime that attribute's property is referenced the current value will be returned. An event notification is available when any of the
attributes changes in value.

Note:Note:
If the entire contents of an InteractionQueue is to be watched, Queue watches are more efficient than having individual
Interaction watches on each Interaction in the Queue.

Interaction Watches.Interaction Watches.

There are a number of object classes that are used to get specific attributes for a given Interaction. They are watched, meaning, that
any time an attribute is changed, the internal cache of that object is kept up to date so anytime that attribute's property is
referenced the current value will be returned. An event notification is available when any of the attributes changes in value. All such
objects inherit from Interaction. Examples of Interaction classes are: CallInteraction, ChatInteraction, and
EmailInteraction.

Interaction ConferencesInteraction Conferences

The InteractionConference object provides information about a conference of interactions. Additionally, the
InteractionQueue object provides support for watching attribute changes for Interactions within conferences contained on an
interaction queue.

ININ.IceLib.InteractionsININ.IceLib.Interactions

16

The ININ.IceLib.People namespace contains classes for accessing Customer Interaction Center workgroups, status
messages, users and users' statuses. It represents the functionality of Workgroups and Users.

The customer interacts with this feature by writing .Net code to the ININ.IceLib.People application programming interface
(API). This API is made up of things an IceLib application writer may want to query or manipulate affecting a logged in agent. The
capabilities include:

Query Workgroups and their members.
Query User access lists.
Query User rights.
Get available status messages.
Get filtered status messages by user.
Get and set User status.
Workgroup activation.
Get Response Management documents/items and add new user entries
Get available Account Codes and WrapUp Codes.
Get available Custom Buttons.
Query and request licenses.

This namespace provides object classes that get specific settings for the session user. These objects are watched, meaning that
any time an attribute is changed, the internal cache of that object is kept up to date. Whenever that attribute's property is referenced
the current value will be returned from the cache. Applications can receive an event notification when any of the attributes changes
in value.

Examples of watched attribute classes are:
UserRightsSettings—the basic user rights settings for a CIC user.
UserAccessListsSettings—the access control lists settings for a CIC user.
UserDataSettings—miscellaneous data settings for a CIC user, such as the user's workgroup membership, supervisory
rights, and greeting preference.
UserSettings—basic settings for a CIC user and access to all watched attribute and object classes in the People
namespace.
WorkgroupDetails—the common details for a CIC workgroup, such as its members, queue type, activation status, and so
forth.

Attributes become watched when the IceLib application writer queries for attributes of interest about a user. The library will then
keep track of notifications, update the attribute and send an optional event when an attribute changes value.

This API can watch objects too. Watched objects are one or more objects that are of interest to the application. The library will
query for the objects and maintain them in a cache. The library will watch for updates to these objects and will update these objects
in the cache. An optional event is available when objects in this cache change or in some instances objects have been added or
removed from the system.

Examples of watched object classes are:
Custom ButtonList—list of custom buttons defined for a CIC user.
FilteredStatusMessageList—list of status messages available for a CIC user.
StatusMessageList—list of status messages defined in the CIC system.
UserWorkgroupActivationList—list of workgroup activations for a CIC user.
UserStatusList—the current status for a list of CIC users.

ININ.IceLib.PeopleININ.IceLib.People

17

Response Management is the general term for features that allow a user to send predefined responses, such as textual messages,
URLs, or files to other persons participating in a Chat interaction. Messages, URLs, or files can be sent from your custom
applications.

The ININ.IceLib.People.ResponseManagement namespace contains classes for retrieving Customer Interaction Center
Response Documents and for editing user-specific Response Documents. These documents typically answer frequently asked
questions. Agents can use the standard answers defined in Response Documents when he or she is participating in a chat session.

Response Management works as follows:
1. A web visitor requests an interactive Chat session.
2. An agent is alerted by Interaction Desktop (or a custom IceLib application). The agent picks up the interaction request.

Interaction Desktop pops a dialog on the agent's workstation that allows the agent to begin an interactive typing session with
the customer. The ResponsesResponses tab of the agent's Chat dialog can contain the names of preset standard text messages, URLs
which the agent can push the visitor's browser, and text file names. The agent can drag any combination of these responses
into the ResponseResponse field. When a URL is sent, the remote chat participant's web browser opens to that address.
Agents can add personal responses, such as a personal greeting or a frequently sent file or URL, to the Response Management
library. These personal responses are listed on the ResponsesResponses tab under the [User Name].xml directory, and are not
available to other Interaction Desktop users.

ININ.IceLib.People.ResponseManagementININ.IceLib.People.ResponseManagement

18

Response Management ObjectsResponse Management Objects
A ResponseItem represents Interaction Messages, Interaction Urls and Interaction Files:

An Interaction Message is a note, URL, or file that an agent can send to a web visitor during an interactive session. Interaction
Message objects typically display short messages. For example, an Interaction Message titled 'Standard Response Times'
could contain 'Standard response times for a support request are'.
An Interaction Url stores frequently used Urls.
An Interaction File points to a file path. For example, an Interaction File titled IceLib Documentation could point to
C:\ProgramFiles\InteractiveIntelligence\IceLib\Documentation\IceLib.chm.

ResponseItemTypeResponseItemType

indicates if a ResponseItem is a Message, URL, File, or document.

ResponseDocumentResponseDocument

is a collection of Interaction Messages, Interaction Urls and Interaction Files. A ResponseDocument may contain nodes
that in turn contain a collection of Interaction Messages, Interaction Urls and Interaction Files. A response node can
contain child nodes.

ResponseNodeResponseNode

is a collection of Interaction Messages, Interaction Urls and Interaction Files. A ResponseNode may contain more
ResponseNodes and also ResponseItems.

ResponseManagerResponseManager

has the capability to retrieve Response Documents, Interaction Messages, Interaction Urls and Interaction Files. In addition,
ResponseManager can also receive any updates at the server.

EditableResponseDocumentEditableResponseDocument

is a Response Document that can be edited by the application. By default, all documents are read-only. User can add
response nodes and response items to the editable document. The editable can be obtained from the ResponseManager's
UserDocument property.

EditableResponseItemEditableResponseItem

is a Response Item that can be edited by the application. By default, the ResponseItems are read-only.
EditableResponseItems can be obtained from either EditableResponseNode or from EditableResponseDocument.

EditableResponseNodeEditableResponseNode

is a Response Node that can be edited by the application. By default, the ResponseNodes are read-only.
EditableResponseNodes can be obtained from either EditableResponseNode or from EditableResponseDocument.

ResponsesChangedEventArgsResponsesChangedEventArgs

indicates that there has been a change in Response documents at the server. Set a event handler for ResponsesChanged to
receive updates.

The ININ.IceLib.ProcessAutomation namespace contains classes for manipulating, monitoring, and managing Interaction Process
Automation data.

The Interaction Process Automation system consists of many entities such as Processes, Process instances, and Work Items.

The ININ.IceLib.QualityManagement namespace contains classes for implementing quality management related features using the
IceLib API and Interaction Center.

ININ.IceLib.ProcessAutomationININ.IceLib.ProcessAutomation

IceLib.QualityManagementIceLib.QualityManagement

19

The ININ.IceLib.Reporting namespace contains classes for implementing reporting related features using the IceLib API and
Interaction Center.

InteractionSnapshotBrowser can be used to retrieve historical information about interactions. Use
GetInteractionSnapshot(GetInteractionSnapshotParameters) to retrieve historical data about a specific interaction,
or use GetInteractionSnapshots to retrieve a filtered list of historical data about multiple interactions.

The ININ.IceLib.Reporting.Interactions namespace contains classes that provide support for Interactions reporting
classes.

The ININ.IceLib.Reporting.Interactions.Filters namespace contains classes that provide support for filtering
interaction snapshots via GetInteractionSnapshots.

The ININ.IceLib.Reporting.Interactions.Details namespace contains classes that examine the segments of an
interaction. This includes information such as the workgroup and parties involved with the segment, as well as basic information
such as segment type, duration, and disposition.

The ININ.IceLib.Statistics namespace contains classes for watching and listening to Interaction Center statistics.

There are a number of classes within the ININ.IceLib.Statistics namespace that provide support to the classes mentioned
in the preceding summary. Examples of the supporting classes are enumerations, event argument classes, and delegates used by
events within classes.

The StatisticCatalog can be used to watch statistics. This watch will provide the details about the definition of the statistic,
such as units, precision, name, and description. The StatisticListener can be used to listen to statistic values. This will
retrieve the current value of the statistic of interest and send out events when that value changes.

ININ.IceLib.ReportingININ.IceLib.Reporting

ININ.IceLib.Reporting.InteractionsININ.IceLib.Reporting.Interactions

ININ.IceLib.Reporting.Interactions.FiltersININ.IceLib.Reporting.Interactions.Filters

ININ.IceLib.Reporting.Interactions.DetailsININ.IceLib.Reporting.Interactions.Details

ININ.IceLib.StatisticsININ.IceLib.Statistics

20

The ININ.IceLib.Statistics.Alerts namespace contains classes for viewing, changing, and receiving Interaction Center
statistics alerts.

There are a number of classes within the ININ.IceLib.Statistics.Alerts namespace that provide support to the classes
mentioned in the preceding summary. Examples of the supporting classes are enumerations, event argument classes, and
delegates used by events within classes.

The following sequence describes one way of utilizing the members of the ININ.IceLib.Statistics.Alerts namespace for
creating an alert to monitor.

Use StatisticCatalog to get a list of the available StatisticDefinitions
Use a StatisticDefinition to create a StatisticKey, which would describe the threshold for an alert
Use the StatisticKey to create an AlertDefinition
Create AlertRules associated with the AlertDefinition
Add the AlertDefinition to an EditableAlertSet
Create the AlertSet by sending the EditableAlertSet to the CreateAlertSet(EditableAlertSet) method
Subscribe to notifications for the AlertSet by calling the Subscribe(AlertSet, Boolean) method on AlertCatalog

Memo WatchesMemo Watches

A Memo is an object that can be sent out from the server under certain circumstances or sent from a user to a list of recipients. The
MemoList is used to watch for Memo objects that are sent out. There are three types of watching that can take place, MyMemos,
GeneralMemos, and AlertMemos. MyMemos watch for Memo objects that target the current user. GeneralMemos watch for all non-
alert Memo objects. AlertMemos watch for any Memo objects that are associated with an AlertSet. The MemoList is also used
for sending out new Memo objects and sending out Memo updates.

The ININ.IceLib.Tracker namespace contains classes for manipulating and managing Interaction Tracker data. The Interaction
Tracker system consists of many entities such as Interactions, Organizations, Individuals, AddressTypes, and
InteractionAddressTypes. Together, these entities provide Interaction Center users with a robust means of managing contact
information, tracking interactions, and retrieving information pertaining to these different entities from the Tracker database.

About the Tracker xIC SubsystemAbout the Tracker xIC Subsystem

If you are unfamiliar with Interaction Tracker, it is a subsystem that runs on the xIC server. It's job is to process events and
notifications from the other xIC subsystems. In doing so, the Tracker subsystem updates the Tracker database based on these
Tracker related events (i.e. an interaction has been completed, a participant has been added to or removed from a segment, etc.).

The Tracker API consists of a set of classes that allows a .NET developer to create an application that accesses Tracker data.
Since the data access is provided through the IceLib Tracker API, the developer does not need to write any low-level database code.
A very robust application may be written in any .NET language without the need for any ADO.NET code.

Note:Note:
Any application that uses the Tracker API requires a valid Session Manager session. The logged in user of the Session
Manager session must have a Tracker Access license, otherwise, the Tracker methods will not be executed.

The .NET Nullable Types feature is a good fit for some aspects of IceLib. In particular, the Tracker API benefits, since it contains
examples of query by example, where the properties of an object should only be matched if they are specified (i.e. not null).

There are two ways to declare nullable types: as a generic (e.g. Nullable<int> foo;) or as a type shortcut (e.g. int? foo;).
Either of these are acceptable in the public API, although using the generic declaration might be more eye catching in the code. The
documentation system always uses the generic approach, regardless of which way it is declared in the code.

Nullable types can only be declared for value types; if a type is already a reference type (even an immutable one like string), it
cannot be further wrapped up into a nullable type. Therefore Nullable<string> will not compile. Since reference type variables
can already hold null values, this isn't really a problem.

You can use the Tracker API to:

ININ.IceLib.Statistics.AlertsININ.IceLib.Statistics.Alerts

ININ.IceLib.TrackerININ.IceLib.Tracker

Tracker APITracker API

21

Administer tracker metadata types.
Perform Tracker user operations.
Search Tracker information.

The three main classes in the ININ.IceLib.Tracker namespace are:
1. TrackerAdmin. This class provides methods that allow you to add, delete, update and retrieve Tracker types, and perform

administrative tasks. The Tracker types are:
AddressType - used to classify addresses within Tracker.
InteractionAddressType - used to classify interaction addresses within Tracker.
InteractionAddressSubtype - used to further classify interaction addresses within Tracker.
IndividualType - used to classify Individuals within Tracker.
OrganizationType - used to classify Organizations within Tracker.
TrackerAttributeType - used to classify Attributes within Tracker.
Title - represent titles that can be assigned to individuals (Mr., Miss, Dr., etc.)

You will be familiar with these types if you have ever performed a Tracker administrative task in Interaction Administrator. The
Tracker node in Interaction Administrator allows administrators to add, delete, and update AddressTypes, IndividualTypes,
OrganizationTypes, etc. If you want to create a .Net application that provides administrative capabilities for Tracker, you would
use the TrackerAdmin class.

2. TrackerUser. This class provides methods that allow you to add, delete, update and retrieve Tracker data that relates to
Individuals, Organizations, and Locations. These entities are represented by minor classes in the ININ.IceLib.Tracker
namespace:

Individual - represents an Individual within Tracker.
Organization - represents an Organization within Tracker.
Location - represents a Location within Tracker.
Annotation - represents an Annotation within Tracker.
IndividualAddress - represents an address for an Individual within Tracker.
IndividualInteractionAddress - represents an interaction address for an Individual within Tracker.
OrganizationAddress - represents an address for an Organization within Tracker.
OrganizationInteractionAddress - represents an interaction address for an Organization within Tracker.
LocationAddress - represents an address for a Location within Tracker.
LocationInteractionAddress - represents an interaction address for a Location within Tracker.

You will be familiar with these Tracker entities if you have ever used the Win32 TrackerClient application. The TrackerClient
allows you to manage Tracker Contacts. You can add an address for an Individual. You can associate an Individual with a
particular Organization. You can add a new Organization or Location. If you want to create a .Net application that provides
these user level capabilities for Tracker, you would use the TrackerUser class.

3. TrackerSearch contains methods that perform search operations. These methods allow you to search the Tracker database
for Individuals, Organizations, Locations, and Interactions. The classes used by TrackerSearch are:

IndividualView - contains information about an Individual within Tracker.
Organization - contains information about an Organization within Tracker.
LocationView - contains information about a Location within Tracker.
InteractionView - contains information about an Interaction within Tracker.

This namespace manages Faxes and Voicemails. Unified Messaging classes allow access and manipulation of Fax and voicemail
files generated by a CIC server. Typically these files are delivered to a mailbox through the corporate Microsoft Exchange or IBM
Notes server, although PureConnect also supports the use of file-based messaging in cases where Exchange or Notes is not in use.

Unified Messaging provides the means to:
Manage and playback voicemails to handset, number, or station.
Receive events for new voicemails.
Manipulate and submit Faxes to the CIC server.
Monitor outgoing Fax activity.
Control MWI status and events.

The API provides both synchronous (blocking) and asynchronous (non-blocking) versions of each method, so that developers can
choose the programming model that is most appropriate for their needs.

ININ.IceLib.UnifiedMessagingININ.IceLib.UnifiedMessaging

22

Fax-related classes allow a .NET developer to manipulate and submit Faxes to a CIC server for sending, as well as monitor all
outgoing fax activity for a logged-in user. If the need arises, the ability to cancel a pending Fax is also available.

Building a FaxBuilding a Fax

Interaction Faxes are separated into a collection of fax pages, page attributes and envelopes all available through a central object,
the FaxFile.

Fax methods in the Unified Messaging API allow developers to create a new Fax file. The FaxFile object provides all of the
functions necessary for the construction of a fax, including the ability to add and insert pages as well as save the file in TIFF or i3f
format.

Sending a FaxSending a Fax

The Unified Messaging API can send a Fax through the CIC server. Faxes are addressed through the use of Fax envelopes. A single
fax file contains one envelope per addressee. Envelopes must be added before the Fax file can be submitted to the CIC server for
delivery.

Monitoring Fax ActivityMonitoring Fax Activity

The Unified Messaging API can monitor outgoing Fax activity. When monitoring is enabled, an application will receive periodic
update events about the state of each Fax being processed on the CIC server.

Voicemail functionality is implemented by classes that allow a .NET developer to playback voice messages received by a CIC
server as well as to monitor for new incoming messages. Developers can tap into the voicemail recording capabilities of the CIC
server in order to create new voicemail audio.

Playback functionality is provided through the VoicemailMessage object. It allows a developer to play a voice message to any of
the following locations:

Handset - the handset associated with the station a user is currently logged into. In the case of SIP audio, the handset is a set
of speakers or headphones. In a traditional phone setup, the handset is typically a phone receiver.
Number - a remote phone number
Station - a station defined in CIC

The API also offers the ability to control the state of a voicemail by marking it as read (acknowledged) or not.

The API can download the voicemail WAV file to a local workstation. The access capabilities include retrieval of existing voicemail
audio files attached to a message, and creation and retrieval of new voicemail audio files.

The final piece of functionality in the unified messaging API allows a developer to control the state of their voicemail waiting
indicator. The indicator can be manually set to on or off or the server can be instructed to calculate the correct state through the
API.

Fax Capabilit iesFax Capabilit ies

Voicemail Capabilit iesVoicemail Capabilit ies

File Access CapabilityFile Access Capability

MWI CapabilityMWI Capability

23

Install IceLibInstall IceLib
To install IceLib (32-bit) or (64-bit) on a Windows computer:
1. If you have not done so already, follow the procedure on the PureConnect Product Information site at

https://my.inin.com/products/cic/Pages/Releases-and-Patches.aspx to download and copy the CIC 2015 R1 or later .iso file
to a file server on the CIC network.

2. Run Install.exe from the \Installs directory on the share.
3. Locate the IceLib (32-bit) or (64-bit) install in the Off-Server Off-Server ComponentsComponents tab, click the checkbox, and click Instal lInstal l .
4. Click NextNext in the first and second dialogs.
5. Click Instal lInstal l in the final dialog.

Customers can use a separate msi install in their own IceLib deployment scenarios. The Developer install copies the IceLib
assemblies (and dependencies) onto the destination machine. These could be used as a sub-install of the IceLib Developer Install,
to copy only the runtime assemblies necessary to use IceLib from a custom application. This offers simplicity and can be run from
other installs, such as a customer's own msi projects.

Applying new releasesApplying new releases
For instructions on applying new releases for IceLib, see https://my.inin.com/products/cic/Pages/Latest-Release.aspx.

24

https://my.inin.com/products/cic/Pages/Releases-and-Patches.aspx
https://my.inin.com/products/cic/Pages/Latest-Release.aspx

Sample ApplicationsSample Applications
The IceLib Developer Install copies sample applications to an ExampleApps folder below the destination path. These practical
working examples illustrate "best practices" use of IceLib. In total, they exercise the majority of IceLib's functionality.

Applications in ExampleApps Folder

LanguageLanguage Pro ject Pro ject Fo lderFolder DescriptionDescription

C# DirectoriesClient Demonstrates the functionality of the ININ.IceLib.Directories namespace. This
application shows how to connect to a CIC server, display information about
contact directories on the server, view metadata for a directory, display entries in
a directory, and even create a new contact directory.

C# DirExplorer C# source in the ExampleApps\DirExplorer folder exercises the functionality of
the ININ.IceLib.Directories namespace by displaying workgroups, contact
directories, Tracker, Station groups and entries in the Company Directory. A
column in each view indicates whether or not a watch is in effect.

C# FaxSample This application demonstrates how to send a Fax message.

C# InteractionsTest This C# example implements a simple but feature-rich telephony client, similar to
Interaction Desktop. You can perform common telephony tasks (place calls,
send calls to voicemail, disconnect, etc.), view voicemails and query server
parameters. This example exercises the functionality of the
ININ.IceLib.Interactions namespace.

C# ConnectionExtensionsTest This application tests server parameters, password policies, and custom
notifications within the IceLib API.

C# StatisticsSample This example exercises the functionality of the ININ.IceLib.Statistics namespace.
It contains browsing of the statistics catalog, watching valid parameter values,
listening to statistic value changes, and configuration and monitoring of alerts.

C# PeopleClient This example exercises the functionality of the ININ.IceLib.People namespace.
Once you establish a session with the server, you can view Watched QueriesWatched Queries
(attributes of various settings, details of access rights, etc.), information about
Status Messages, and license information.

C# TrackerAdmin This example helps you understand classes in the ININ.IceLib.Tracker
namespace. The TreeView in the left pane allows you to select Address Types,
Attribute Types, InteractionAddress Types, InteractionAddress Subtypes, Titles,
Individual Types, and Organization Types. These elements correspond to classes
in the Tracker namespace.

C# TrackerClient This example demonstrates the search functionality of the ININ.IceLib.Tracker
namespace. It allows the user to search the Tracker for individuals, interactions,
organizations, or a location.

VB.Net VBTest Visual Basic.Net source in the ExampleApps\VBTest folder demonstrates
functionality of the ININ.IceLib.People namespace, especially the UserStatus and
UserStatusList classes. Once you establish a session with the CIC server, you
can filter workgroups to select persons in a given status.

ASP.Net AspIceLibClientDemo This example implements a web page to set status information and place a call.
It shows how to use the IceLib public API to do tasks commonly carried out by
CIC Client applications.

C# ConfigurationCmdlet This example shows one way to use the IceLib SDK to configure a CIC Server. It
is a set of Windows PowerShell Cmdlets which are registered through the use of
the SnapIn.

C# AutomationProcessLauncher This shows some capabilities of the ININ.IceLib.ProcessAutomation
namespace. This is a simple console-based application that demonstrates
launching an Interaction Process Automation process.

25

DirectoriesClient C# ExampleDirectoriesClient C# Example
C# source in the ExampleApps\DirectoriesClient folder demonstrates the functionality of the ININ.IceLib.Directories
namespace. This application shows how to connect to a CIC server, display information about contact directories on the server,
view metadata for a directory, display entries in a directory, and even create a new contact directory.

At startup, the application prompts for information needed to establish a session. Once a session is established with the server, a
list of contact directories is displayed.

This dialog displays a page view of contact directory entries. You can add, remove, and display the properties of individual entries,
or add entries to a speed dial directory on the server.

26

DirExplorer C# ExampleDirExplorer C# Example
C# source in the ExampleApps\DirExplorer folder exercises the functionality of the ININ.IceLib.Directories namespace by
displaying workgroups, contact directories, Tracker, Station groups and entries in the Company Directory. A column in each view
indicates whether or not a watch is in effect.

This application uses a simple two-pane window. The right pane displays details for the item selected in the ListView control on the
left.

27

FaxSample C# ExampleFaxSample C# Example
FaxSample is a C# application that demonstrates how to send a Fax via CIC.
1. Open C:\ProgramFiles\InteractiveIntelligence\IceLibSDK\ExampleApps\FaxSample\FaxSample.sln.
2. Press Shift + F6 to build FaxSample. Then press F5 to run it. The Fax SampleFax Sample window will appear.

3. Pull down the Fi leFi le menu and select ConnectConnect . The Send Test FaxSend Test Fax dialog will appear:

4. Enter destination Fax number, name, and company information. Then click OKOK.

5. Wait for Fax transmission to end.
6. Pull down the Fi leFi le menu and select DisconnectDisconnect .
7. When you are finished, pull down the Fi leFi le menu and select ExitExit .

28

InteractionsTest C# ExampleInteractionsTest C# Example
This C# example implements a simple but feature-rich telephony client, similar to Interaction Desktop. It exercises the functionality
of the ININ.IceLib.Interactions namespace. You can perform common telephony tasks (place calls, send calls to voicemail,
disconnect, etc.), view voicemails and query server parameters. This source code is in the ExampleApps\InteractionsTest
folder.

This application displays interactions in the logged in user's queue, and allows you to perform operations on them.

ConnectionExtensionsTest C# ExampleConnectionExtensionsTest C# Example
This C# application tests server parameters, password policies, and custom notifications within the IceLib API.

29

30

Statistics C# ExampleStatistics C# Example
This example exercises the functionality of the ININ.IceLib.Statistics namespace. It contains browsing of the statistics catalog,
watching valid parameter values, listening to statistic value changes, and configuration and monitoring of alerts.

PeopleClient C# ExamplePeopleClient C# Example
This example exercises the functionality of the ININ.IceLib.People namespace. Once you establish a session with the server, you
can view Watched Watched QueriesQueries (attributes of various settings, details of access rights, etc.), information about Status MessagesStatus Messages ,
and l icense l icense informationinformation.

31

Watched queries display the attributes of user data settings, user rights, access control, workgroup details, and so forth.

32

When you set the Query View to Status MessagesStatus Messages , you can monitor and edit the status of the logged in user, set watches on the
status of other users, and more.

33

TrackerAdmin C# ExampleTrackerAdmin C# Example
C# source in the ExampleApps\TrackerAdmin folder helps you understand classes in the ININ.IceLib.Tracker namespace. The
TreeView in the left pane allows you to select Address Types, Attribute Types, InteractionAddress Types, InteractionAddress
Subtypes, Titles, Individual Types, and Organization Types. These elements correspond to classes in the Tracker namespace.

For example, AddressTypes classify addresses within Tracker. The Name property of an AddressType is what is often displayed in
applications. Typical AddressType names are: billing, business, home, and shipping.

OrganizationTypes classify Organizations within Tracker. Typical OrganizationType names are: System, External, Internal, Customer,
Partner, Vendor, and so on.

InteractionAddressTypes classify interaction addresses within Tracker. Typical InteractionAddressType names are: ChatChat , Emai lEmail ,
FaxFax, and PagerPager .

Each IndividualInteractionAddress, LocationInteractionAddress, and OrganizationInteractionAddress contains an
InteractionAddressType member that is used to hold the address type that it represents. A typical Individual InteractionAddressIndividual InteractionAddress
may contain an interaction address type of PhonePhone and an interaction address subtype of AssistantAssistant .

AddressTypes in Interaction Tracker.

34

TrackerClient C# ExampleTrackerClient C# Example
C# source in the ExampleApps\TrackerClient folder demonstrates the functionality of the ININ.IceLib.Tracker namespace.
This application searches the Tracker database for individuals, interactions, organizations, or location.

Example location search returns records for Fishers, Indiana.

VBTest VB.NET ExampleVBTest VB.NET Example
Visual Basic.Net source in the ExampleApps\VBTest folder demonstrates functionality found in the ININ.IceLib.People
namespace, especially the UserStatus and UserStatusList classes. Once you establish a session with the CIC server, you can filter
workgroups to select persons in a given status. For example, you can quickly display a list of people who are on vacation.

35

AspIceLibClientDemo ASP.NET ExampleAspIceLibClientDemo ASP.NET Example
This example implements a web page to set status information and place a call. It demonstrates how to use the IceLib public API to
do tasks that are commonly carried out by the various CIC Client applications. Click on Create my SessionCreate my Session to start. If the link to
create your session is unavailable then one currently exists.

Configuration CmdletConfiguration Cmdlet
This example application lets you use the IceLib SDK to configure a CIC server. It is a set of Windows PowerShell Cmdlets which
are registered through the use of the SnapIn. The readme file gives full information about the cmdlets. You type commands on the
command line in the Powershell window. In summary, cmdlets are:

New-Session: Creates a session and connects it to the CIC server you specify.
Get-Session: Retrieves and displays a list of active sessions.
Remove-Session: Destroys the session(s) you specify.
Get-User: Searches the CIC server for one or more users, then displays a list of results.
New-User: Creates a new CIC server account with user information you specify.
Remove-User: Permanently deletes a user account from the CIC server.
Set-Password: Configures the password for a user or group of users.

The application also includes an example of how to format IceLib classes in Powershell and two simple example scripts:
ListAllUsers and BulkImport.

36

AutomationProcessLauncherAutomationProcessLauncher
C# source in the ExampleApps\AutomationProcessLauncher folder demonstrates the features of the
ININ.IceLib.ProcessAutomation namespace. This is a simple console-based application that demonstrates launching an Interaction
Process Automation process.

37

Change LogChange Log
The following table lists the changes to the Introduction to IceLib Technical Reference since its initial release.

DateDate ChangesChanges

07-October-2011 Retitled document and updated with new information about the structure of the IceLib API help, as well as
about each namespace and class.

28-June-2013 Updated copyright page and added 64-bit support.

10-July-2013 Added text to make it clear that 64-bit support is available in IC 4.0 Service Update 4 and later versions.

10-September-2013 Added new section on the namespace Reporting.Interactions.Details.

09-September-2014 Updated documentation to reflect changes required in the transition from version 4.0 SU# to CIC 2015 R1,
such as updates to product version numbers, system requirements, installation procedures, references to
Interactive Intelligence Product Information site URLs, and copyright and trademark information.

17-September-2015 Updated documentation to reflect the addition of two CIC client applications, Interaction Desktop and
Interaction Connect, and the removal of Interaction Client .NET Edition.
Updated document formatting.

25-April-2017 Updated documentation to reflect the removal of Interaction Client Web Edition and Interaction Client
Mobile Web Edition.

07-September-2017 Updated cover, copyright and trademark pages.
Applied Genesys terminology.

21-June-2019
Reorganized the content only, which included combining some topics and deleting others that just had an introductory
sentence such as, "In this section...".

38

	Table of Contents
	Introduction to the IceLib API
	IceLib 32-Bit and 64-Bit Support
	Documentation

	IceLib Overview
	How the IceLib API Help is Organized
	Structure of namespace sections
	Structure of class topics under namespaces

	IceLib Namespaces
	ININ.IceLib
	IceLib.Configuration
	List-Based Configuration Objects
	Container-Based Configuration Objects

	IceLib.Configuration.DataTypes
	ININ.IceLib.Configuration.Efaq
	ININ.IceLib.Configuration.Feedback
	IceLib.Configuration.Mailbox
	ININ.IceLib.Configuration.Mailbox.Utility
	ININ.IceLib.Configuration.OCS
	ININ.IceLib.Configuration.Optimizer
	ININ.IceLib.Configuration.ProcessAutomation
	ININ.IceLib.Configuration.Recorder
	ININ.IceLib.Configuration.Reporting
	IceLib.Configuration.Validators
	ININ.IceLib.Connection
	IceLib.Connection.Extensions
	ININ.IceLib.Data.TransactionBuilder

	ININ.IceLib.Directories
	Directories Manager
	Basic Directory Support
	Watched View Support

	IceLib.Efaq
	ININ.IceLib.Interactions
	Queue Watches
	Interaction Watches.
	Interaction Conferences

	ININ.IceLib.People
	ININ.IceLib.People.ResponseManagement

	Response Management Objects
	ININ.IceLib.ProcessAutomation
	IceLib.QualityManagement
	ININ.IceLib.Reporting
	ININ.IceLib.Reporting.Interactions
	ININ.IceLib.Reporting.Interactions.Filters
	ININ.IceLib.Reporting.Interactions.Details
	ININ.IceLib.Statistics
	ININ.IceLib.Statistics.Alerts
	Memo Watches

	ININ.IceLib.Tracker
	About the Tracker xIC Subsystem

	Tracker API
	ININ.IceLib.UnifiedMessaging
	Fax Capabilities
	Building a Fax
	Sending a Fax
	Monitoring Fax Activity

	Voicemail Capabilities
	File Access Capability
	MWI Capability

	Install IceLib
	Applying new releases

	Sample Applications
	DirectoriesClient C# Example
	DirExplorer C# Example
	FaxSample C# Example
	InteractionsTest C# Example
	ConnectionExtensionsTest C# Example
	Statistics C# Example
	PeopleClient C# Example
	TrackerAdmin C# Example
	TrackerClient C# Example
	VBTest VB.NET Example
	AspIceLibClientDemo ASP.NET Example
	Configuration Cmdlet
	AutomationProcessLauncher

	Change Log

